VideoTools/vendor/github.com/srwiley/rasterx/stroke.go
Stu Leak 68df790d27 Fix player frame generation and video playback
Major improvements to UnifiedPlayer:

1. GetFrameImage() now works when paused for responsive UI updates
2. Play() method properly starts FFmpeg process
3. Frame display loop runs continuously for smooth video display
4. Disabled audio temporarily to fix video playback fundamentals
5. Simplified FFmpeg command to focus on video stream only

Player now:
- Generates video frames correctly
- Shows video when paused
- Has responsive progress tracking
- Starts playback properly

Next steps: Re-enable audio playback once video is stable
2026-01-07 22:20:00 -05:00

678 lines
23 KiB
Go

// Copyright 2017 by the rasterx Authors. All rights reserved.
//
// created: 2017 by S.R.Wiley
package rasterx
import (
"math"
"golang.org/x/image/math/fixed"
)
const (
cubicsPerHalfCircle = 8 // Number of cubic beziers to approx half a circle
epsilonFixed = fixed.Int26_6(16) // 1/4 in fixed point
// fixed point t paramaterization shift factor;
// (2^this)/64 is the max length of t for fixed.Int26_6
tStrokeShift = 14
)
type (
// JoinMode type to specify how segments join.
JoinMode uint8
// CapFunc defines a function that draws caps on the ends of lines
CapFunc func(p Adder, a, eNorm fixed.Point26_6)
// GapFunc defines a function to bridge gaps when the miter limit is
// exceeded
GapFunc func(p Adder, a, tNorm, lNorm fixed.Point26_6)
// C2Point represents a point that connects two stroke segments
// and holds the tangent, normal and radius of curvature
// of the trailing and leading segments in fixed point values.
C2Point struct {
P, TTan, LTan, TNorm, LNorm fixed.Point26_6
RT, RL fixed.Int26_6
}
// Stroker does everything a Filler does, but
// also allows for stroking and dashed stroking in addition to
// filling
Stroker struct {
Filler
CapT, CapL CapFunc // Trailing and leading cap funcs may be set separately
JoinGap GapFunc // When gap appears between segments, this function is called
firstP, trailPoint, leadPoint C2Point // Tracks progress of the stroke
ln fixed.Point26_6 // last normal of intra-seg connection.
u, mLimit fixed.Int26_6 // u is the half-width of the stroke.
JoinMode JoinMode
inStroke bool
}
)
// JoinMode constants determine how stroke segments bridge the gap at a join
// ArcClip mode is like MiterClip applied to arcs, and is not part of the SVG2.0
// standard.
const (
Arc JoinMode = iota
ArcClip
Miter
MiterClip
Bevel
Round
)
// NewStroker returns a ptr to a Stroker with default values.
// A Stroker has all of the capabilities of a Filler and Scanner, plus the ability
// to stroke curves with solid lines. Use SetStroke to configure with non-default
// values.
func NewStroker(width, height int, scanner Scanner) *Stroker {
r := new(Stroker)
r.Scanner = scanner
r.SetBounds(width, height)
//Defaults for stroking
r.SetWinding(true)
r.u = 2 << 6
r.mLimit = 4 << 6
r.JoinMode = MiterClip
r.JoinGap = RoundGap
r.CapL = RoundCap
r.CapT = RoundCap
r.SetStroke(1<<6, 4<<6, ButtCap, nil, FlatGap, MiterClip)
return r
}
// SetStroke set the parameters for stroking a line. width is the width of the line, miterlimit is the miter cutoff
// value for miter, arc, miterclip and arcClip joinModes. CapL and CapT are the capping functions for leading and trailing
// line ends. If one is nil, the other function is used at both ends. If both are nil, both ends are ButtCapped.
// gp is the gap function that determines how a gap on the convex side of two joining lines is filled. jm is the JoinMode
// for curve segments.
func (r *Stroker) SetStroke(width, miterLimit fixed.Int26_6, capL, capT CapFunc, gp GapFunc, jm JoinMode) {
r.u = width / 2
r.CapL = capL
r.CapT = capT
r.JoinMode = jm
r.JoinGap = gp
r.mLimit = (r.u * miterLimit) >> 6
if r.CapT == nil {
if r.CapL == nil {
r.CapT = ButtCap
} else {
r.CapT = r.CapL
}
}
if r.CapL == nil {
r.CapL = r.CapT
}
if gp == nil {
if r.JoinMode == Round {
r.JoinGap = RoundGap
} else {
r.JoinGap = FlatGap
}
}
}
// GapToCap is a utility that converts a CapFunc to GapFunc
func GapToCap(p Adder, a, eNorm fixed.Point26_6, gf GapFunc) {
p.Start(a.Add(eNorm))
gf(p, a, eNorm, Invert(eNorm))
p.Line(a.Sub(eNorm))
}
var (
// ButtCap caps lines with a straight line
ButtCap CapFunc = func(p Adder, a, eNorm fixed.Point26_6) {
p.Start(a.Add(eNorm))
p.Line(a.Sub(eNorm))
}
// SquareCap caps lines with a square which is slightly longer than ButtCap
SquareCap CapFunc = func(p Adder, a, eNorm fixed.Point26_6) {
tpt := a.Add(turnStarboard90(eNorm))
p.Start(a.Add(eNorm))
p.Line(tpt.Add(eNorm))
p.Line(tpt.Sub(eNorm))
p.Line(a.Sub(eNorm))
}
// RoundCap caps lines with a half-circle
RoundCap CapFunc = func(p Adder, a, eNorm fixed.Point26_6) {
GapToCap(p, a, eNorm, RoundGap)
}
// CubicCap caps lines with a cubic bezier
CubicCap CapFunc = func(p Adder, a, eNorm fixed.Point26_6) {
GapToCap(p, a, eNorm, CubicGap)
}
// QuadraticCap caps lines with a quadratic bezier
QuadraticCap CapFunc = func(p Adder, a, eNorm fixed.Point26_6) {
GapToCap(p, a, eNorm, QuadraticGap)
}
// Gap functions
//FlatGap bridges miter-limit gaps with a straight line
FlatGap GapFunc = func(p Adder, a, tNorm, lNorm fixed.Point26_6) {
p.Line(a.Add(lNorm))
}
// RoundGap bridges miter-limit gaps with a circular arc
RoundGap GapFunc = func(p Adder, a, tNorm, lNorm fixed.Point26_6) {
strokeArc(p, a, a.Add(tNorm), a.Add(lNorm), true, 0, 0, p.Line)
p.Line(a.Add(lNorm)) // just to be sure line joins cleanly,
// last pt in stoke arc may not be precisely s2
}
// CubicGap bridges miter-limit gaps with a cubic bezier
CubicGap GapFunc = func(p Adder, a, tNorm, lNorm fixed.Point26_6) {
p.CubeBezier(a.Add(tNorm).Add(turnStarboard90(tNorm)), a.Add(lNorm).Add(turnPort90(lNorm)), a.Add(lNorm))
}
// QuadraticGap bridges miter-limit gaps with a quadratic bezier
QuadraticGap GapFunc = func(p Adder, a, tNorm, lNorm fixed.Point26_6) {
c1, c2 := a.Add(tNorm).Add(turnStarboard90(tNorm)), a.Add(lNorm).Add(turnPort90(lNorm))
cm := c1.Add(c2).Mul(fixed.Int26_6(1 << 5))
p.QuadBezier(cm, a.Add(lNorm))
}
)
// StrokeArc strokes a circular arc by approximation with bezier curves
func strokeArc(p Adder, a, s1, s2 fixed.Point26_6, clockwise bool, trimStart,
trimEnd fixed.Int26_6, firstPoint func(p fixed.Point26_6)) (ps1, ds1, ps2, ds2 fixed.Point26_6) {
// Approximate the circular arc using a set of cubic bezier curves by the method of
// L. Maisonobe, "Drawing an elliptical arc using polylines, quadratic
// or cubic Bezier curves", 2003
// https://www.spaceroots.org/documents/elllipse/elliptical-arc.pdf
// The method was simplified for circles.
theta1 := math.Atan2(float64(s1.Y-a.Y), float64(s1.X-a.X))
theta2 := math.Atan2(float64(s2.Y-a.Y), float64(s2.X-a.X))
if !clockwise {
for theta1 < theta2 {
theta1 += math.Pi * 2
}
} else {
for theta2 < theta1 {
theta2 += math.Pi * 2
}
}
deltaTheta := theta2 - theta1
if trimStart > 0 {
ds := (deltaTheta * float64(trimStart)) / float64(1<<tStrokeShift)
deltaTheta -= ds
theta1 += ds
}
if trimEnd > 0 {
ds := (deltaTheta * float64(trimEnd)) / float64(1<<tStrokeShift)
deltaTheta -= ds
}
segs := int(math.Abs(deltaTheta)/(math.Pi/cubicsPerHalfCircle)) + 1
dTheta := deltaTheta / float64(segs)
tde := math.Tan(dTheta / 2)
alpha := fixed.Int26_6(math.Sin(dTheta) * (math.Sqrt(4+3*tde*tde) - 1) * (64.0 / 3.0)) // Math is fun!
r := float64(Length(s1.Sub(a))) // Note r is *64
ldp := fixed.Point26_6{X: -fixed.Int26_6(r * math.Sin(theta1)), Y: fixed.Int26_6(r * math.Cos(theta1))}
ds1 = ldp
ps1 = fixed.Point26_6{X: a.X + ldp.Y, Y: a.Y - ldp.X}
firstPoint(ps1)
s1 = ps1
for i := 1; i <= segs; i++ {
eta := theta1 + dTheta*float64(i)
ds2 = fixed.Point26_6{X: -fixed.Int26_6(r * math.Sin(eta)), Y: fixed.Int26_6(r * math.Cos(eta))}
ps2 = fixed.Point26_6{X: a.X + ds2.Y, Y: a.Y - ds2.X} // Using deriviative to calc new pt, because circle
p1 := s1.Add(ldp.Mul(alpha))
p2 := ps2.Sub(ds2.Mul(alpha))
p.CubeBezier(p1, p2, ps2)
s1, ldp = ps2, ds2
}
return
}
// Joiner is called when two segments of a stroke are joined. it is exposed
// so that if can be wrapped to generate callbacks for the join points.
func (r *Stroker) Joiner(p C2Point) {
crossProd := p.LNorm.X*p.TNorm.Y - p.TNorm.X*p.LNorm.Y
// stroke bottom edge, with the reverse of p
r.strokeEdge(C2Point{P: p.P, TNorm: Invert(p.LNorm), LNorm: Invert(p.TNorm),
TTan: Invert(p.LTan), LTan: Invert(p.TTan), RT: -p.RL, RL: -p.RT}, -crossProd)
// stroke top edge
r.strokeEdge(p, crossProd)
}
// strokeEdge reduces code redundancy in the Joiner function by 2x since it handles
// the top and bottom edges. This function encodes most of the logic of how to
// handle joins between the given C2Point point p, and the end of the line.
func (r *Stroker) strokeEdge(p C2Point, crossProd fixed.Int26_6) {
ra := &r.Filler
s1, s2 := p.P.Add(p.TNorm), p.P.Add(p.LNorm) // Bevel points for top leading and trailing
ra.Start(s1)
if crossProd > -epsilonFixed*epsilonFixed { // Almost co-linear or convex
ra.Line(s2)
return // No need to fill any gaps
}
var ct, cl fixed.Point26_6 // Center of curvature trailing, leading
var rt, rl fixed.Int26_6 // Radius of curvature trailing, leading
// Adjust radiuses for stroke width
if r.JoinMode == Arc || r.JoinMode == ArcClip {
// Find centers of radius of curvature and adjust the radius to be drawn
// by half the stroke width.
if p.RT != 0 {
if p.RT > 0 {
ct = p.P.Add(ToLength(turnPort90(p.TTan), p.RT))
rt = p.RT - r.u
} else {
ct = p.P.Sub(ToLength(turnPort90(p.TTan), -p.RT))
rt = -p.RT + r.u
}
if rt < 0 {
rt = 0
}
}
if p.RL != 0 {
if p.RL > 0 {
cl = p.P.Add(ToLength(turnPort90(p.LTan), p.RL))
rl = p.RL - r.u
} else {
cl = p.P.Sub(ToLength(turnPort90(p.LTan), -p.RL))
rl = -p.RL + r.u
}
if rl < 0 {
rl = 0
}
}
}
if r.JoinMode == MiterClip || r.JoinMode == Miter ||
// Arc or ArcClip with 0 tRadCurve and 0 lRadCurve is treated the same as a
// Miter or MiterClip join, resp.
((r.JoinMode == Arc || r.JoinMode == ArcClip) && (rt == 0 && rl == 0)) {
xt := CalcIntersect(s1.Sub(p.TTan), s1, s2, s2.Sub(p.LTan))
xa := xt.Sub(p.P)
if Length(xa) < r.mLimit { // within miter limit
ra.Line(xt)
ra.Line(s2)
return
}
if r.JoinMode == MiterClip || (r.JoinMode == ArcClip) {
//Projection of tNorm onto xa
tProjP := xa.Mul(fixed.Int26_6((DotProd(xa, p.TNorm) << 6) / DotProd(xa, xa)))
projLen := Length(tProjP)
if r.mLimit > projLen { // the miter limit line is past the bevel point
// t is the fraction shifted by tStrokeShift to scale the vectors from the bevel point
// to the line intersection, so that they abbut the miter limit line.
tiLength := Length(xa)
sx1, sx2 := xt.Sub(s1), xt.Sub(s2)
t := (r.mLimit - projLen) << tStrokeShift / (tiLength - projLen)
tx := ToLength(sx1, t*Length(sx1)>>tStrokeShift)
lx := ToLength(sx2, t*Length(sx2)>>tStrokeShift)
vx := ToLength(xa, t*Length(xa)>>tStrokeShift)
s1p, _, ap := s1.Add(tx), s2.Add(lx), p.P.Add(vx)
gLen := Length(ap.Sub(s1p))
ra.Line(s1p)
r.JoinGap(ra, ap, ToLength(turnPort90(p.TTan), gLen), ToLength(turnPort90(p.LTan), gLen))
ra.Line(s2)
return
}
} // Fallthrough
} else if r.JoinMode == Arc || r.JoinMode == ArcClip {
// Test for cases of a bezier meeting line, an line meeting a bezier,
// or a bezier meeting a bezier. (Line meeting line is handled above.)
switch {
case rt == 0: // rl != 0, because one must be non-zero as checked above
xt, intersect := RayCircleIntersection(s1.Add(p.TTan), s1, cl, rl)
if intersect {
ray1, ray2 := xt.Sub(cl), s2.Sub(cl)
clockwise := (ray1.X*ray2.Y > ray1.Y*ray2.X) // Sign of xprod
if Length(p.P.Sub(xt)) < r.mLimit { // within miter limit
strokeArc(ra, cl, xt, s2, clockwise, 0, 0, ra.Line)
ra.Line(s2)
return
}
// Not within miter limit line
if r.JoinMode == ArcClip { // Scale bevel points towards xt, and call gap func
xa := xt.Sub(p.P)
//Projection of tNorm onto xa
tProjP := xa.Mul(fixed.Int26_6((DotProd(xa, p.TNorm) << 6) / DotProd(xa, xa)))
projLen := Length(tProjP)
if r.mLimit > projLen { // the miter limit line is past the bevel point
// t is the fraction shifted by tStrokeShift to scale the line or arc from the bevel point
// to the line intersection, so that they abbut the miter limit line.
sx1 := xt.Sub(s1) //, xt.Sub(s2)
t := fixed.Int26_6(1<<tStrokeShift) - ((r.mLimit - projLen) << tStrokeShift / (Length(xa) - projLen))
tx := ToLength(sx1, t*Length(sx1)>>tStrokeShift)
s1p := xt.Sub(tx)
ra.Line(s1p)
sp1, ds1, ps2, _ := strokeArc(ra, cl, xt, s2, clockwise, t, 0, ra.Start)
ra.Start(s1p)
// calc gap center as pt where -tnorm and line perp to midcoord
midP := sp1.Add(s1p).Mul(fixed.Int26_6(1 << 5)) // midpoint
midLine := turnPort90(midP.Sub(sp1))
if midLine.X*midLine.X+midLine.Y*midLine.Y > epsilonFixed { // if midline is zero, CalcIntersect is invalid
ap := CalcIntersect(s1p, s1p.Sub(p.TNorm), midLine.Add(midP), midP)
gLen := Length(ap.Sub(s1p))
if clockwise {
ds1 = Invert(ds1)
}
r.JoinGap(ra, ap, ToLength(turnPort90(p.TTan), gLen), ToLength(turnStarboard90(ds1), gLen))
}
ra.Line(sp1)
ra.Start(ps2)
ra.Line(s2)
return
}
//Bevel points not past miter limit: fallthrough
}
}
case rl == 0: // rt != 0, because one must be non-zero as checked above
xt, intersect := RayCircleIntersection(s2.Sub(p.LTan), s2, ct, rt)
if intersect {
ray1, ray2 := s1.Sub(ct), xt.Sub(ct)
clockwise := ray1.X*ray2.Y > ray1.Y*ray2.X
if Length(p.P.Sub(xt)) < r.mLimit { // within miter limit
strokeArc(ra, ct, s1, xt, clockwise, 0, 0, ra.Line)
ra.Line(s2)
return
}
// Not within miter limit line
if r.JoinMode == ArcClip { // Scale bevel points towards xt, and call gap func
xa := xt.Sub(p.P)
//Projection of lNorm onto xa
lProjP := xa.Mul(fixed.Int26_6((DotProd(xa, p.LNorm) << 6) / DotProd(xa, xa)))
projLen := Length(lProjP)
if r.mLimit > projLen { // The miter limit line is past the bevel point,
// t is the fraction to scale the line or arc from the bevel point
// to the line intersection, so that they abbut the miter limit line.
sx2 := xt.Sub(s2)
t := fixed.Int26_6(1<<tStrokeShift) - ((r.mLimit - projLen) << tStrokeShift / (Length(xa) - projLen))
lx := ToLength(sx2, t*Length(sx2)>>tStrokeShift)
s2p := xt.Sub(lx)
_, _, ps2, ds2 := strokeArc(ra, ct, s1, xt, clockwise, 0, t, ra.Line)
// calc gap center as pt where -lnorm and line perp to midcoord
midP := s2p.Add(ps2).Mul(fixed.Int26_6(1 << 5)) // midpoint
midLine := turnStarboard90(midP.Sub(ps2))
if midLine.X*midLine.X+midLine.Y*midLine.Y > epsilonFixed { // if midline is zero, CalcIntersect is invalid
ap := CalcIntersect(midP, midLine.Add(midP), s2p, s2p.Sub(p.LNorm))
gLen := Length(ap.Sub(ps2))
if clockwise {
ds2 = Invert(ds2)
}
r.JoinGap(ra, ap, ToLength(turnStarboard90(ds2), gLen), ToLength(turnPort90(p.LTan), gLen))
}
ra.Line(s2)
return
}
//Bevel points not past miter limit: fallthrough
}
}
default: // Both rl != 0 and rt != 0 as checked above
xt1, xt2, gIntersect := CircleCircleIntersection(ct, cl, rt, rl)
xt, intersect := ClosestPortside(s1, s2, xt1, xt2, gIntersect)
if intersect {
ray1, ray2 := s1.Sub(ct), xt.Sub(ct)
clockwiseT := (ray1.X*ray2.Y > ray1.Y*ray2.X)
ray1, ray2 = xt.Sub(cl), s2.Sub(cl)
clockwiseL := ray1.X*ray2.Y > ray1.Y*ray2.X
if Length(p.P.Sub(xt)) < r.mLimit { // within miter limit
strokeArc(ra, ct, s1, xt, clockwiseT, 0, 0, ra.Line)
strokeArc(ra, cl, xt, s2, clockwiseL, 0, 0, ra.Line)
ra.Line(s2)
return
}
if r.JoinMode == ArcClip { // Scale bevel points towards xt, and call gap func
xa := xt.Sub(p.P)
//Projection of lNorm onto xa
lProjP := xa.Mul(fixed.Int26_6((DotProd(xa, p.LNorm) << 6) / DotProd(xa, xa)))
projLen := Length(lProjP)
if r.mLimit > projLen { // The miter limit line is past the bevel point,
// t is the fraction to scale the line or arc from the bevel point
// to the line intersection, so that they abbut the miter limit line.
t := fixed.Int26_6(1<<tStrokeShift) - ((r.mLimit - projLen) << tStrokeShift / (Length(xa) - projLen))
_, _, ps1, ds1 := strokeArc(ra, ct, s1, xt, clockwiseT, 0, t, r.Filler.Line)
ps2, ds2, fs2, _ := strokeArc(ra, cl, xt, s2, clockwiseL, t, 0, ra.Start)
midP := ps1.Add(ps2).Mul(fixed.Int26_6(1 << 5)) // midpoint
midLine := turnStarboard90(midP.Sub(ps1))
ra.Start(ps1)
if midLine.X*midLine.X+midLine.Y*midLine.Y > epsilonFixed { // if midline is zero, CalcIntersect is invalid
if clockwiseT {
ds1 = Invert(ds1)
}
if clockwiseL {
ds2 = Invert(ds2)
}
ap := CalcIntersect(midP, midLine.Add(midP), ps2, ps2.Sub(turnStarboard90(ds2)))
gLen := Length(ap.Sub(ps2))
r.JoinGap(ra, ap, ToLength(turnStarboard90(ds1), gLen), ToLength(turnStarboard90(ds2), gLen))
}
ra.Line(ps2)
ra.Start(fs2)
ra.Line(s2)
return
}
}
}
// fallthrough to final JoinGap
}
}
r.JoinGap(ra, p.P, p.TNorm, p.LNorm)
ra.Line(s2)
return
}
// Stop a stroked line. The line will close
// is isClosed is true. Otherwise end caps will
// be drawn at both ends.
func (r *Stroker) Stop(isClosed bool) {
if r.inStroke == false {
return
}
rf := &r.Filler
if isClosed {
if r.firstP.P != rf.a {
r.Line(r.firstP.P)
}
a := rf.a
r.firstP.TNorm = r.leadPoint.TNorm
r.firstP.RT = r.leadPoint.RT
r.firstP.TTan = r.leadPoint.TTan
rf.Start(r.firstP.P.Sub(r.firstP.TNorm))
rf.Line(a.Sub(r.ln))
rf.Start(a.Add(r.ln))
rf.Line(r.firstP.P.Add(r.firstP.TNorm))
r.Joiner(r.firstP)
r.firstP.blackWidowMark(rf)
} else {
a := rf.a
rf.Start(r.leadPoint.P.Sub(r.leadPoint.TNorm))
rf.Line(a.Sub(r.ln))
rf.Start(a.Add(r.ln))
rf.Line(r.leadPoint.P.Add(r.leadPoint.TNorm))
r.CapL(rf, r.leadPoint.P, r.leadPoint.TNorm)
r.CapT(rf, r.firstP.P, Invert(r.firstP.LNorm))
}
r.inStroke = false
}
// QuadBezier starts a stroked quadratic bezier.
func (r *Stroker) QuadBezier(b, c fixed.Point26_6) {
r.quadBezierf(r, b, c)
}
// CubeBezier starts a stroked quadratic bezier.
func (r *Stroker) CubeBezier(b, c, d fixed.Point26_6) {
r.cubeBezierf(r, b, c, d)
}
// quadBezierf calcs end curvature of beziers
func (r *Stroker) quadBezierf(s Rasterx, b, c fixed.Point26_6) {
r.trailPoint = r.leadPoint
r.CalcEndCurvature(r.a, b, c, c, b, r.a, fixed.Int52_12(2<<12), doCalcCurvature(s))
r.QuadBezierF(s, b, c)
r.a = c
}
// doCalcCurvature determines if calculation of the end curvature is required
// depending on the raster type and JoinMode
func doCalcCurvature(r Rasterx) bool {
switch q := r.(type) {
case *Filler:
return false // never for filler
case *Stroker:
return (q.JoinMode == Arc || q.JoinMode == ArcClip)
case *Dasher:
return (q.JoinMode == Arc || q.JoinMode == ArcClip)
default:
return true // Better safe than sorry if another raster type is used
}
}
func (r *Stroker) cubeBezierf(sgm Rasterx, b, c, d fixed.Point26_6) {
if (r.a == b && c == d) || (r.a == b && b == c) || (c == b && d == c) {
sgm.Line(d)
return
}
r.trailPoint = r.leadPoint
// Only calculate curvature if stroking or and using arc or arc-clip
doCalcCurve := doCalcCurvature(sgm)
const dm = fixed.Int52_12((3 << 12) / 2)
switch {
// b != c, and c != d see above
case r.a == b:
r.CalcEndCurvature(b, c, d, d, c, b, dm, doCalcCurve)
// b != a, and b != c, see above
case c == d:
r.CalcEndCurvature(r.a, b, c, c, b, r.a, dm, doCalcCurve)
default:
r.CalcEndCurvature(r.a, b, c, d, c, b, dm, doCalcCurve)
}
r.CubeBezierF(sgm, b, c, d)
r.a = d
}
// Line adds a line segment to the rasterizer
func (r *Stroker) Line(b fixed.Point26_6) {
r.LineSeg(r, b)
}
//LineSeg is called by both the Stroker and Dasher
func (r *Stroker) LineSeg(sgm Rasterx, b fixed.Point26_6) {
r.trailPoint = r.leadPoint
ba := b.Sub(r.a)
if ba.X == 0 && ba.Y == 0 { // a == b, line is degenerate
if r.trailPoint.TTan.X != 0 || r.trailPoint.TTan.Y != 0 {
ba = r.trailPoint.TTan // Use last tangent for seg tangent
} else { // Must be on top of last moveto; set ba to X axis unit vector
ba = fixed.Point26_6{X: 1 << 6, Y: 0}
}
}
bnorm := turnPort90(ToLength(ba, r.u))
r.trailPoint.LTan = ba
r.leadPoint.TTan = ba
r.trailPoint.LNorm = bnorm
r.leadPoint.TNorm = bnorm
r.trailPoint.RL = 0.0
r.leadPoint.RT = 0.0
r.trailPoint.P = r.a
r.leadPoint.P = b
sgm.joinF()
sgm.lineF(b)
r.a = b
}
// lineF is for intra-curve lines. It is required for the Rasterizer interface
// so that if the line is being stroked or dash stroked, different actions can be
// taken.
func (r *Stroker) lineF(b fixed.Point26_6) {
// b is either an intra-segment value, or
// the end of the segment.
var bnorm fixed.Point26_6
a := r.a // Hold a since r.a is going to change during stroke operation
if b == r.leadPoint.P { // End of segment
bnorm = r.leadPoint.TNorm // Use more accurate leadPoint tangent
} else {
bnorm = turnPort90(ToLength(b.Sub(a), r.u)) // Intra segment normal
}
ra := &r.Filler
ra.Start(b.Sub(bnorm))
ra.Line(a.Sub(r.ln))
ra.Start(a.Add(r.ln))
ra.Line(b.Add(bnorm))
r.a = b
r.ln = bnorm
}
// Start iniitates a stroked path
func (r *Stroker) Start(a fixed.Point26_6) {
r.inStroke = false
r.Filler.Start(a)
}
// CalcEndCurvature calculates the radius of curvature given the control points
// of a bezier curve.
// It is a low level function exposed for the purposes of callbacks
// and debugging.
func (r *Stroker) CalcEndCurvature(p0, p1, p2, q0, q1, q2 fixed.Point26_6,
dm fixed.Int52_12, calcRadCuve bool) {
r.trailPoint.P = p0
r.leadPoint.P = q0
r.trailPoint.LTan = p1.Sub(p0)
r.leadPoint.TTan = q0.Sub(q1)
r.trailPoint.LNorm = turnPort90(ToLength(r.trailPoint.LTan, r.u))
r.leadPoint.TNorm = turnPort90(ToLength(r.leadPoint.TTan, r.u))
if calcRadCuve {
r.trailPoint.RL = RadCurvature(p0, p1, p2, dm)
r.leadPoint.RT = -RadCurvature(q0, q1, q2, dm)
} else {
r.trailPoint.RL = 0
r.leadPoint.RT = 0
}
}
func (r *Stroker) joinF() {
if r.inStroke == false {
r.inStroke = true
r.firstP = r.trailPoint
} else {
ra := &r.Filler
tl := r.trailPoint.P.Sub(r.trailPoint.TNorm)
th := r.trailPoint.P.Add(r.trailPoint.TNorm)
if r.a != r.trailPoint.P || r.ln != r.trailPoint.TNorm {
a := r.a
ra.Start(tl)
ra.Line(a.Sub(r.ln))
ra.Start(a.Add(r.ln))
ra.Line(th)
}
r.Joiner(r.trailPoint)
r.trailPoint.blackWidowMark(ra)
}
r.ln = r.trailPoint.LNorm
r.a = r.trailPoint.P
}
// blackWidowMark handles a gap in a stroke that can occur when a line end is too close
// to a segment to segment join point. Although it is only required in those cases,
// at this point, no code has been written to properly detect when it is needed,
// so for now it just draws by default.
func (jp *C2Point) blackWidowMark(ra Adder) {
xprod := jp.TNorm.X*jp.LNorm.Y - jp.TNorm.Y*jp.LNorm.X
if xprod > epsilonFixed*epsilonFixed {
tl := jp.P.Sub(jp.TNorm)
ll := jp.P.Sub(jp.LNorm)
ra.Start(jp.P)
ra.Line(tl)
ra.Line(ll)
ra.Line(jp.P)
} else if xprod < -epsilonFixed*epsilonFixed {
th := jp.P.Add(jp.TNorm)
lh := jp.P.Add(jp.LNorm)
ra.Start(jp.P)
ra.Line(lh)
ra.Line(th)
ra.Line(jp.P)
}
}