Major improvements to UnifiedPlayer: 1. GetFrameImage() now works when paused for responsive UI updates 2. Play() method properly starts FFmpeg process 3. Frame display loop runs continuously for smooth video display 4. Disabled audio temporarily to fix video playback fundamentals 5. Simplified FFmpeg command to focus on video stream only Player now: - Generates video frames correctly - Shows video when paused - Has responsive progress tracking - Starts playback properly Next steps: Re-enable audio playback once video is stable
307 lines
9.4 KiB
Go
307 lines
9.4 KiB
Go
// geomx adds some geometry functions needed by rasterx
|
|
// Copyright 2017 by the rasterx Authors. All rights reserved.
|
|
// Created: 2/12/2017 by S.R.Wiley
|
|
|
|
package rasterx
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
|
|
"golang.org/x/image/math/fixed"
|
|
)
|
|
|
|
// Invert returns the point inverted around the origin
|
|
func Invert(v fixed.Point26_6) fixed.Point26_6 {
|
|
return fixed.Point26_6{X: -v.X, Y: -v.Y}
|
|
}
|
|
|
|
// turnStarboard90 returns the vector 90 degrees starboard (right in direction heading)
|
|
func turnStarboard90(v fixed.Point26_6) fixed.Point26_6 {
|
|
return fixed.Point26_6{X: -v.Y, Y: v.X}
|
|
}
|
|
|
|
// turnPort90 returns the vector 90 degrees port (left in direction heading)
|
|
func turnPort90(v fixed.Point26_6) fixed.Point26_6 {
|
|
return fixed.Point26_6{X: v.Y, Y: -v.X}
|
|
}
|
|
|
|
// DotProd returns the inner product of p and q
|
|
func DotProd(p fixed.Point26_6, q fixed.Point26_6) fixed.Int52_12 {
|
|
return fixed.Int52_12(int64(p.X)*int64(q.X) + int64(p.Y)*int64(q.Y))
|
|
}
|
|
|
|
// Length is the distance from the origin of the point
|
|
func Length(v fixed.Point26_6) fixed.Int26_6 {
|
|
vx, vy := float64(v.X), float64(v.Y)
|
|
return fixed.Int26_6(math.Sqrt(vx*vx + vy*vy))
|
|
}
|
|
|
|
//PathCommand is the type for the path command token
|
|
type PathCommand fixed.Int26_6
|
|
|
|
// Human readable path constants
|
|
const (
|
|
PathMoveTo PathCommand = iota
|
|
PathLineTo
|
|
PathQuadTo
|
|
PathCubicTo
|
|
PathClose
|
|
)
|
|
|
|
// A Path starts with a PathCommand value followed by zero to three fixed
|
|
// int points.
|
|
type Path []fixed.Int26_6
|
|
|
|
// ToSVGPath returns a string representation of the path
|
|
func (p Path) ToSVGPath() string {
|
|
s := ""
|
|
for i := 0; i < len(p); {
|
|
if i != 0 {
|
|
s += " "
|
|
}
|
|
switch PathCommand(p[i]) {
|
|
case PathMoveTo:
|
|
s += fmt.Sprintf("M%4.3f,%4.3f", float32(p[i+1])/64, float32(p[i+2])/64)
|
|
i += 3
|
|
case PathLineTo:
|
|
s += fmt.Sprintf("L%4.3f,%4.3f", float32(p[i+1])/64, float32(p[i+2])/64)
|
|
i += 3
|
|
case PathQuadTo:
|
|
s += fmt.Sprintf("Q%4.3f,%4.3f,%4.3f,%4.3f", float32(p[i+1])/64, float32(p[i+2])/64,
|
|
float32(p[i+3])/64, float32(p[i+4])/64)
|
|
i += 5
|
|
case PathCubicTo:
|
|
s += "C" + fmt.Sprintf("C%4.3f,%4.3f,%4.3f,%4.3f,%4.3f,%4.3f", float32(p[i+1])/64, float32(p[i+2])/64,
|
|
float32(p[i+3])/64, float32(p[i+4])/64, float32(p[i+5])/64, float32(p[i+6])/64)
|
|
i += 7
|
|
case PathClose:
|
|
s += "Z"
|
|
i++
|
|
default:
|
|
panic("freetype/rasterx: bad pather")
|
|
}
|
|
}
|
|
return s
|
|
}
|
|
|
|
// String returns a readable representation of a Path.
|
|
func (p Path) String() string {
|
|
return p.ToSVGPath()
|
|
}
|
|
|
|
// Clear zeros the path slice
|
|
func (p *Path) Clear() {
|
|
*p = (*p)[:0]
|
|
}
|
|
|
|
// Start starts a new curve at the given point.
|
|
func (p *Path) Start(a fixed.Point26_6) {
|
|
*p = append(*p, fixed.Int26_6(PathMoveTo), a.X, a.Y)
|
|
}
|
|
|
|
// Line adds a linear segment to the current curve.
|
|
func (p *Path) Line(b fixed.Point26_6) {
|
|
*p = append(*p, fixed.Int26_6(PathLineTo), b.X, b.Y)
|
|
}
|
|
|
|
// QuadBezier adds a quadratic segment to the current curve.
|
|
func (p *Path) QuadBezier(b, c fixed.Point26_6) {
|
|
*p = append(*p, fixed.Int26_6(PathQuadTo), b.X, b.Y, c.X, c.Y)
|
|
}
|
|
|
|
// CubeBezier adds a cubic segment to the current curve.
|
|
func (p *Path) CubeBezier(b, c, d fixed.Point26_6) {
|
|
*p = append(*p, fixed.Int26_6(PathCubicTo), b.X, b.Y, c.X, c.Y, d.X, d.Y)
|
|
}
|
|
|
|
// Stop joins the ends of the path
|
|
func (p *Path) Stop(closeLoop bool) {
|
|
if closeLoop {
|
|
*p = append(*p, fixed.Int26_6(PathClose))
|
|
}
|
|
}
|
|
|
|
// AddTo adds the Path p to q.
|
|
func (p Path) AddTo(q Adder) {
|
|
for i := 0; i < len(p); {
|
|
switch PathCommand(p[i]) {
|
|
case PathMoveTo:
|
|
q.Stop(false) // Fixes issues #1 by described by Djadala; implicit close if currently in path.
|
|
q.Start(fixed.Point26_6{X: p[i+1], Y: p[i+2]})
|
|
i += 3
|
|
case PathLineTo:
|
|
q.Line(fixed.Point26_6{X: p[i+1], Y: p[i+2]})
|
|
i += 3
|
|
case PathQuadTo:
|
|
q.QuadBezier(fixed.Point26_6{X: p[i+1], Y: p[i+2]}, fixed.Point26_6{X: p[i+3], Y: p[i+4]})
|
|
i += 5
|
|
case PathCubicTo:
|
|
q.CubeBezier(fixed.Point26_6{X: p[i+1], Y: p[i+2]},
|
|
fixed.Point26_6{X: p[i+3], Y: p[i+4]}, fixed.Point26_6{X: p[i+5], Y: p[i+6]})
|
|
i += 7
|
|
case PathClose:
|
|
q.Stop(true)
|
|
i++
|
|
default:
|
|
panic("AddTo: bad path")
|
|
}
|
|
}
|
|
q.Stop(false)
|
|
}
|
|
|
|
// ToLength scales the point to the length indicated by ln
|
|
func ToLength(p fixed.Point26_6, ln fixed.Int26_6) (q fixed.Point26_6) {
|
|
if ln == 0 || (p.X == 0 && p.Y == 0) {
|
|
return
|
|
}
|
|
|
|
pX, pY := float64(p.X), float64(p.Y)
|
|
lnF := float64(ln)
|
|
pLen := math.Sqrt(pX*pX + pY*pY)
|
|
|
|
qX, qY := pX*lnF/pLen, pY*lnF/pLen
|
|
q.X, q.Y = fixed.Int26_6(qX), fixed.Int26_6(qY)
|
|
return
|
|
}
|
|
|
|
// ClosestPortside returns the closest of p1 or p2 on the port side of the
|
|
// line from the bow to the stern. (port means left side of the direction you are heading)
|
|
// isIntersecting is just convienice to reduce code, and if false returns false, because p1 and p2 are not valid
|
|
func ClosestPortside(bow, stern, p1, p2 fixed.Point26_6, isIntersecting bool) (xt fixed.Point26_6, intersects bool) {
|
|
if isIntersecting == false {
|
|
return
|
|
}
|
|
dir := bow.Sub(stern)
|
|
dp1 := p1.Sub(stern)
|
|
dp2 := p2.Sub(stern)
|
|
cp1 := dir.X*dp1.Y - dp1.X*dir.Y
|
|
cp2 := dir.X*dp2.Y - dp2.X*dir.Y
|
|
switch {
|
|
case cp1 < 0 && cp2 < 0:
|
|
return
|
|
case cp1 < 0 && cp2 >= 0:
|
|
return p2, true
|
|
case cp1 >= 0 && cp2 < 0:
|
|
return p1, true
|
|
default: // both points on port side
|
|
dirdot := DotProd(dir, dir)
|
|
// calculate vector rejections of dp1 and dp2 onto dir
|
|
h1 := dp1.Sub(dir.Mul(fixed.Int26_6((DotProd(dp1, dir) << 6) / dirdot)))
|
|
h2 := dp2.Sub(dir.Mul(fixed.Int26_6((DotProd(dp2, dir) << 6) / dirdot)))
|
|
// return point with smallest vector rejection; i.e. closest to dir line
|
|
if (h1.X*h1.X + h1.Y*h1.Y) > (h2.X*h2.X + h2.Y*h2.Y) {
|
|
return p2, true
|
|
}
|
|
return p1, true
|
|
}
|
|
}
|
|
|
|
// RadCurvature returns the curvature of a Bezier curve end point,
|
|
// given an end point, the two adjacent control points and the degree.
|
|
// The sign of the value indicates if the center of the osculating circle
|
|
// is left or right (port or starboard) of the curve in the forward direction.
|
|
func RadCurvature(p0, p1, p2 fixed.Point26_6, dm fixed.Int52_12) fixed.Int26_6 {
|
|
a, b := p2.Sub(p1), p1.Sub(p0)
|
|
abdot, bbdot := DotProd(a, b), DotProd(b, b)
|
|
h := a.Sub(b.Mul(fixed.Int26_6((abdot << 6) / bbdot))) // h is the vector rejection of a onto b
|
|
if h.X == 0 && h.Y == 0 { // points are co-linear
|
|
return 0
|
|
}
|
|
radCurve := fixed.Int26_6((fixed.Int52_12(a.X*a.X+a.Y*a.Y) * dm / fixed.Int52_12(Length(h)<<6)) >> 6)
|
|
if a.X*b.Y > b.X*a.Y { // xprod sign
|
|
return radCurve
|
|
}
|
|
return -radCurve
|
|
}
|
|
|
|
// CircleCircleIntersection calculates the points of intersection of
|
|
// two circles or returns with intersects == false if no such points exist.
|
|
func CircleCircleIntersection(ct, cl fixed.Point26_6, rt, rl fixed.Int26_6) (xt1, xt2 fixed.Point26_6, intersects bool) {
|
|
dc := cl.Sub(ct)
|
|
d := Length(dc)
|
|
|
|
// Check for solvability.
|
|
if d > (rt + rl) {
|
|
return // No solution. Circles do not intersect.
|
|
}
|
|
// check if d < abs(rt-rl)
|
|
if da := rt - rl; (da > 0 && d < da) || (da < 0 && d < -da) {
|
|
return // No solution. One circle is contained by the other.
|
|
}
|
|
|
|
rlf, rtf, df := float64(rl), float64(rt), float64(d)
|
|
af := (rtf*rtf - rlf*rlf + df*df) / df / 2.0
|
|
hfd := math.Sqrt(rtf*rtf-af*af) / df
|
|
afd := af / df
|
|
|
|
rOffx, rOffy := float64(-dc.Y)*hfd, float64(dc.X)*hfd
|
|
p2x := float64(ct.X) + float64(dc.X)*afd
|
|
p2y := float64(ct.Y) + float64(dc.Y)*afd
|
|
xt1x, xt1y := p2x+rOffx, p2y+rOffy
|
|
xt2x, xt2y := p2x-rOffx, p2y-rOffy
|
|
return fixed.Point26_6{X: fixed.Int26_6(xt1x), Y: fixed.Int26_6(xt1y)},
|
|
fixed.Point26_6{X: fixed.Int26_6(xt2x), Y: fixed.Int26_6(xt2y)}, true
|
|
}
|
|
|
|
// CalcIntersect calculates the points of intersection of two fixed point lines
|
|
// and panics if the determinate is zero. You have been warned.
|
|
func CalcIntersect(a1, a2, b1, b2 fixed.Point26_6) (x fixed.Point26_6) {
|
|
da, db, ds := a2.Sub(a1), b2.Sub(b1), a1.Sub(b1)
|
|
det := float32(da.X*db.Y - db.X*da.Y) // Determinate
|
|
t := float32(ds.Y*db.X-ds.X*db.Y) / det
|
|
x = a1.Add(fixed.Point26_6{X: fixed.Int26_6(float32(da.X) * t), Y: fixed.Int26_6(float32(da.Y) * t)})
|
|
return
|
|
}
|
|
|
|
// RayCircleIntersection calculates the points of intersection of
|
|
// a ray starting at s2 passing through s1 and a circle in fixed point.
|
|
// Returns intersects == false if no solution is possible. If two
|
|
// solutions are possible, the point closest to s2 is returned
|
|
func RayCircleIntersection(s1, s2, c fixed.Point26_6, r fixed.Int26_6) (x fixed.Point26_6, intersects bool) {
|
|
fx, fy, intersects := RayCircleIntersectionF(float64(s1.X), float64(s1.Y),
|
|
float64(s2.X), float64(s2.Y), float64(c.X), float64(c.Y), float64(r))
|
|
return fixed.Point26_6{X: fixed.Int26_6(fx),
|
|
Y: fixed.Int26_6(fy)}, intersects
|
|
|
|
}
|
|
|
|
// RayCircleIntersectionF calculates in floating point the points of intersection of
|
|
// a ray starting at s2 passing through s1 and a circle in fixed point.
|
|
// Returns intersects == false if no solution is possible. If two
|
|
// solutions are possible, the point closest to s2 is returned
|
|
func RayCircleIntersectionF(s1X, s1Y, s2X, s2Y, cX, cY, r float64) (x, y float64, intersects bool) {
|
|
n := s2X - cX // Calculating using 64* rather than divide
|
|
m := s2Y - cY
|
|
|
|
e := s2X - s1X
|
|
d := s2Y - s1Y
|
|
|
|
// Quadratic normal form coefficients
|
|
A, B, C := e*e+d*d, -2*(e*n+m*d), n*n+m*m-r*r
|
|
|
|
D := B*B - 4*A*C
|
|
|
|
if D <= 0 {
|
|
return // No intersection or is tangent
|
|
}
|
|
|
|
D = math.Sqrt(D)
|
|
t1, t2 := (-B+D)/(2*A), (-B-D)/(2*A)
|
|
p1OnSide := t1 > 0
|
|
p2OnSide := t2 > 0
|
|
|
|
switch {
|
|
case p1OnSide && p2OnSide:
|
|
if t2 < t1 { // both on ray, use closest to s2
|
|
t1 = t2
|
|
}
|
|
case p2OnSide: // Only p2 on ray
|
|
t1 = t2
|
|
case p1OnSide: // only p1 on ray
|
|
default: // Neither solution is on the ray
|
|
return
|
|
}
|
|
return (n - e*t1) + cX, (m - d*t1) + cY, true
|
|
}
|