VideoTools/vendor/github.com/srwiley/rasterx/gradient.go
Stu Leak 68df790d27 Fix player frame generation and video playback
Major improvements to UnifiedPlayer:

1. GetFrameImage() now works when paused for responsive UI updates
2. Play() method properly starts FFmpeg process
3. Frame display loop runs continuously for smooth video display
4. Disabled audio temporarily to fix video playback fundamentals
5. Simplified FFmpeg command to focus on video stream only

Player now:
- Generates video frames correctly
- Shows video when paused
- Has responsive progress tracking
- Starts playback properly

Next steps: Re-enable audio playback once video is stable
2026-01-07 22:20:00 -05:00

311 lines
9.0 KiB
Go

// Gradient implementation fo rasterx package
// Copyright 2018 All rights reserved.
// Created: 5/12/2018 by S.R.Wiley
package rasterx
import (
"image/color"
"math"
"sort"
)
// SVG bounds paremater constants
const (
ObjectBoundingBox GradientUnits = iota
UserSpaceOnUse
)
// SVG spread parameter constants
const (
PadSpread SpreadMethod = iota
ReflectSpread
RepeatSpread
)
const epsilonF = 1e-5
type (
// SpreadMethod is the type for spread parameters
SpreadMethod byte
// GradientUnits is the type for gradient units
GradientUnits byte
// GradStop represents a stop in the SVG 2.0 gradient specification
GradStop struct {
StopColor color.Color
Offset float64
Opacity float64
}
// Gradient holds a description of an SVG 2.0 gradient
Gradient struct {
Points [5]float64
Stops []GradStop
Bounds struct{ X, Y, W, H float64 }
Matrix Matrix2D
Spread SpreadMethod
Units GradientUnits
IsRadial bool
}
)
// ApplyOpacity sets the color's alpha channel to the given value
func ApplyOpacity(c color.Color, opacity float64) color.NRGBA {
r, g, b, _ := c.RGBA()
return color.NRGBA{uint8(r), uint8(g), uint8(b), uint8(opacity * 0xFF)}
}
// tColor takes the paramaterized value along the gradient's stops and
// returns a color depending on the spreadMethod value of the gradient and
// the gradient's slice of stop values.
func (g *Gradient) tColor(t, opacity float64) color.Color {
d := len(g.Stops)
// These cases can be taken care of early on
if t >= 1.0 && g.Spread == PadSpread {
s := g.Stops[d-1]
return ApplyOpacity(s.StopColor, s.Opacity*opacity)
}
if t <= 0.0 && g.Spread == PadSpread {
return ApplyOpacity(g.Stops[0].StopColor, g.Stops[0].Opacity*opacity)
}
var modRange = 1.0
if g.Spread == ReflectSpread {
modRange = 2.0
}
mod := math.Mod(t, modRange)
if mod < 0 {
mod += modRange
}
place := 0 // Advance to place where mod is greater than the indicated stop
for place != len(g.Stops) && mod > g.Stops[place].Offset {
place++
}
switch g.Spread {
case RepeatSpread:
var s1, s2 GradStop
switch place {
case 0, d:
s1, s2 = g.Stops[d-1], g.Stops[0]
default:
s1, s2 = g.Stops[place-1], g.Stops[place]
}
return g.blendStops(mod, opacity, s1, s2, false)
case ReflectSpread:
switch place {
case 0:
return ApplyOpacity(g.Stops[0].StopColor, g.Stops[0].Opacity*opacity)
case d:
// Advance to place where mod-1 is greater than the stop indicated by place in reverse of the stop slice.
// Since this is the reflect spead mode, the mod interval is two, allowing the stop list to be
// iterated in reverse before repeating the sequence.
for place != d*2 && mod-1 > (1-g.Stops[d*2-place-1].Offset) {
place++
}
switch place {
case d:
s := g.Stops[d-1]
return ApplyOpacity(s.StopColor, s.Opacity*opacity)
case d * 2:
return ApplyOpacity(g.Stops[0].StopColor, g.Stops[0].Opacity*opacity)
default:
return g.blendStops(mod-1, opacity,
g.Stops[d*2-place], g.Stops[d*2-place-1], true)
}
default:
return g.blendStops(mod, opacity,
g.Stops[place-1], g.Stops[place], false)
}
default: // PadSpread
switch place {
case 0:
return ApplyOpacity(g.Stops[0].StopColor, g.Stops[0].Opacity*opacity)
case len(g.Stops):
s := g.Stops[len(g.Stops)-1]
return ApplyOpacity(s.StopColor, s.Opacity*opacity)
default:
return g.blendStops(mod, opacity, g.Stops[place-1], g.Stops[place], false)
}
}
}
func (g *Gradient) blendStops(t, opacity float64, s1, s2 GradStop, flip bool) color.Color {
s1off := s1.Offset
if s1.Offset > s2.Offset && !flip { // happens in repeat spread mode
s1off--
if t > 1 {
t--
}
}
if s2.Offset == s1off {
return ApplyOpacity(s2.StopColor, s2.Opacity)
}
if flip {
t = 1 - t
}
tp := (t - s1off) / (s2.Offset - s1off)
r1, g1, b1, _ := s1.StopColor.RGBA()
r2, g2, b2, _ := s2.StopColor.RGBA()
return ApplyOpacity(color.RGBA{
uint8((float64(r1)*(1-tp) + float64(r2)*tp) / 256),
uint8((float64(g1)*(1-tp) + float64(g2)*tp) / 256),
uint8((float64(b1)*(1-tp) + float64(b2)*tp) / 256),
0xFF}, (s1.Opacity*(1-tp)+s2.Opacity*tp)*opacity)
}
//GetColorFunction returns the color function
func (g *Gradient) GetColorFunction(opacity float64) interface{} {
return g.GetColorFunctionUS(opacity, Identity)
}
//GetColorFunctionUS returns the color function using the User Space objMatrix
func (g *Gradient) GetColorFunctionUS(opacity float64, objMatrix Matrix2D) interface{} {
switch len(g.Stops) {
case 0:
return ApplyOpacity(color.RGBA{0, 0, 0, 255}, opacity) // default error color for gradient w/o stops.
case 1:
return ApplyOpacity(g.Stops[0].StopColor, opacity) // Illegal, I think, should really should not happen.
}
// sort by offset in ascending order
sort.Slice(g.Stops, func(i, j int) bool {
return g.Stops[i].Offset < g.Stops[j].Offset
})
w, h := float64(g.Bounds.W), float64(g.Bounds.H)
oriX, oriY := float64(g.Bounds.X), float64(g.Bounds.Y)
gradT := Identity.Translate(oriX, oriY).Scale(w, h).
Mult(g.Matrix).Scale(1/w, 1/h).Translate(-oriX, -oriY).Invert()
if g.IsRadial {
cx, cy, fx, fy, rx, ry := g.Points[0], g.Points[1], g.Points[2], g.Points[3], g.Points[4], g.Points[4]
if g.Units == ObjectBoundingBox {
cx = g.Bounds.X + g.Bounds.W*cx
cy = g.Bounds.Y + g.Bounds.H*cy
fx = g.Bounds.X + g.Bounds.W*fx
fy = g.Bounds.Y + g.Bounds.H*fy
rx *= g.Bounds.W
ry *= g.Bounds.H
} else {
cx, cy = g.Matrix.Transform(cx, cy)
fx, fy = g.Matrix.Transform(fx, fy)
rx, ry = g.Matrix.TransformVector(rx, ry)
cx, cy = objMatrix.Transform(cx, cy)
fx, fy = objMatrix.Transform(fx, fy)
rx, ry = objMatrix.TransformVector(rx, ry)
}
if cx == fx && cy == fy {
// When the focus and center are the same things are much simpler;
// t is just distance from center
// scaled by the bounds aspect ratio times r
if g.Units == ObjectBoundingBox {
return ColorFunc(func(xi, yi int) color.Color {
x, y := gradT.Transform(float64(xi)+0.5, float64(yi)+0.5)
dx := float64(x) - cx
dy := float64(y) - cy
return g.tColor(math.Sqrt(dx*dx/(rx*rx)+(dy*dy)/(ry*ry)), opacity)
})
}
return ColorFunc(func(xi, yi int) color.Color {
x := float64(xi) + 0.5
y := float64(yi) + 0.5
dx := x - cx
dy := y - cy
return g.tColor(math.Sqrt(dx*dx/(rx*rx)+(dy*dy)/(ry*ry)), opacity)
})
}
fx /= rx
fy /= ry
cx /= rx
cy /= ry
dfx := fx - cx
dfy := fy - cy
if dfx*dfx+dfy*dfy > 1 { // Focus outside of circle; use intersection
// point of line from center to focus and circle as per SVG specs.
nfx, nfy, intersects := RayCircleIntersectionF(fx, fy, cx, cy, cx, cy, 1.0-epsilonF)
fx, fy = nfx, nfy
if intersects == false {
return color.RGBA{255, 255, 0, 255} // should not happen
}
}
if g.Units == ObjectBoundingBox {
return ColorFunc(func(xi, yi int) color.Color {
x, y := gradT.Transform(float64(xi)+0.5, float64(yi)+0.5)
ex := x / rx
ey := y / ry
t1x, t1y, intersects := RayCircleIntersectionF(ex, ey, fx, fy, cx, cy, 1.0)
if intersects == false { //In this case, use the last stop color
s := g.Stops[len(g.Stops)-1]
return ApplyOpacity(s.StopColor, s.Opacity*opacity)
}
tdx, tdy := t1x-fx, t1y-fy
dx, dy := ex-fx, ey-fy
if tdx*tdx+tdy*tdy < epsilonF {
s := g.Stops[len(g.Stops)-1]
return ApplyOpacity(s.StopColor, s.Opacity*opacity)
}
return g.tColor(math.Sqrt(dx*dx+dy*dy)/math.Sqrt(tdx*tdx+tdy*tdy), opacity)
})
}
return ColorFunc(func(xi, yi int) color.Color {
x := float64(xi) + 0.5
y := float64(yi) + 0.5
ex := x / rx
ey := y / ry
t1x, t1y, intersects := RayCircleIntersectionF(ex, ey, fx, fy, cx, cy, 1.0)
if intersects == false { //In this case, use the last stop color
s := g.Stops[len(g.Stops)-1]
return ApplyOpacity(s.StopColor, s.Opacity*opacity)
}
tdx, tdy := t1x-fx, t1y-fy
dx, dy := ex-fx, ey-fy
if tdx*tdx+tdy*tdy < epsilonF {
s := g.Stops[len(g.Stops)-1]
return ApplyOpacity(s.StopColor, s.Opacity*opacity)
}
return g.tColor(math.Sqrt(dx*dx+dy*dy)/math.Sqrt(tdx*tdx+tdy*tdy), opacity)
})
}
p1x, p1y, p2x, p2y := g.Points[0], g.Points[1], g.Points[2], g.Points[3]
if g.Units == ObjectBoundingBox {
p1x = g.Bounds.X + g.Bounds.W*p1x
p1y = g.Bounds.Y + g.Bounds.H*p1y
p2x = g.Bounds.X + g.Bounds.W*p2x
p2y = g.Bounds.Y + g.Bounds.H*p2y
dx := p2x - p1x
dy := p2y - p1y
d := (dx*dx + dy*dy) // self inner prod
return ColorFunc(func(xi, yi int) color.Color {
x, y := gradT.Transform(float64(xi)+0.5, float64(yi)+0.5)
dfx := x - p1x
dfy := y - p1y
return g.tColor((dx*dfx+dy*dfy)/d, opacity)
})
}
p1x, p1y = g.Matrix.Transform(p1x, p1y)
p2x, p2y = g.Matrix.Transform(p2x, p2y)
p1x, p1y = objMatrix.Transform(p1x, p1y)
p2x, p2y = objMatrix.Transform(p2x, p2y)
dx := p2x - p1x
dy := p2y - p1y
d := (dx*dx + dy*dy)
// if d == 0.0 {
// fmt.Println("zero delta")
// }
return ColorFunc(func(xi, yi int) color.Color {
x := float64(xi) + 0.5
y := float64(yi) + 0.5
dfx := x - p1x
dfy := y - p1y
return g.tColor((dx*dfx+dy*dfy)/d, opacity)
})
}