Major improvements to UnifiedPlayer: 1. GetFrameImage() now works when paused for responsive UI updates 2. Play() method properly starts FFmpeg process 3. Frame display loop runs continuously for smooth video display 4. Disabled audio temporarily to fix video playback fundamentals 5. Simplified FFmpeg command to focus on video stream only Player now: - Generates video frames correctly - Shows video when paused - Has responsive progress tracking - Starts playback properly Next steps: Re-enable audio playback once video is stable
242 lines
6.5 KiB
Go
242 lines
6.5 KiB
Go
// Copyright 2018 by the rasterx Authors. All rights reserved.
|
|
//_
|
|
// Created 2017 by S.R.Wiley
|
|
|
|
package rasterx
|
|
|
|
import (
|
|
"image"
|
|
"image/color"
|
|
"math"
|
|
|
|
"golang.org/x/image/math/fixed"
|
|
)
|
|
|
|
type (
|
|
// ColorFunc maps a color to x y coordinates
|
|
ColorFunc func(x, y int) color.Color
|
|
// Scanner interface for path generating types
|
|
Scanner interface {
|
|
Start(a fixed.Point26_6)
|
|
Line(b fixed.Point26_6)
|
|
Draw()
|
|
GetPathExtent() fixed.Rectangle26_6
|
|
SetBounds(w, h int)
|
|
SetColor(color interface{})
|
|
SetWinding(useNonZeroWinding bool)
|
|
Clear()
|
|
|
|
// SetClip sets an optional clipping rectangle to restrict rendering
|
|
// only to that region -- if size is 0 then ignored (set to image.ZR
|
|
// to clear)
|
|
SetClip(rect image.Rectangle)
|
|
}
|
|
// Adder interface for types that can accumlate path commands
|
|
Adder interface {
|
|
// Start starts a new curve at the given point.
|
|
Start(a fixed.Point26_6)
|
|
// Line adds a line segment to the path
|
|
Line(b fixed.Point26_6)
|
|
// QuadBezier adds a quadratic bezier curve to the path
|
|
QuadBezier(b, c fixed.Point26_6)
|
|
// CubeBezier adds a cubic bezier curve to the path
|
|
CubeBezier(b, c, d fixed.Point26_6)
|
|
// Closes the path to the start point if closeLoop is true
|
|
Stop(closeLoop bool)
|
|
}
|
|
// Rasterx extends the adder interface to include lineF and joinF functions
|
|
Rasterx interface {
|
|
Adder
|
|
lineF(b fixed.Point26_6)
|
|
joinF()
|
|
}
|
|
|
|
// Filler satisfies Rasterx
|
|
Filler struct {
|
|
Scanner
|
|
a, first fixed.Point26_6
|
|
}
|
|
)
|
|
|
|
// Start starts a new path at the given point.
|
|
func (r *Filler) Start(a fixed.Point26_6) {
|
|
r.a = a
|
|
r.first = a
|
|
r.Scanner.Start(a)
|
|
}
|
|
|
|
// Stop sends a path at the given point.
|
|
func (r *Filler) Stop(isClosed bool) {
|
|
if r.first != r.a {
|
|
r.Line(r.first)
|
|
}
|
|
}
|
|
|
|
// QuadBezier adds a quadratic segment to the current curve.
|
|
func (r *Filler) QuadBezier(b, c fixed.Point26_6) {
|
|
r.QuadBezierF(r, b, c)
|
|
}
|
|
|
|
// QuadTo flattens the quadratic Bezier curve into lines through the LineTo func
|
|
// This functions is adapted from the version found in
|
|
// golang.org/x/image/vector
|
|
func QuadTo(ax, ay, bx, by, cx, cy float32, LineTo func(dx, dy float32)) {
|
|
devsq := devSquared(ax, ay, bx, by, cx, cy)
|
|
if devsq >= 0.333 {
|
|
const tol = 3
|
|
n := 1 + int(math.Sqrt(math.Sqrt(tol*float64(devsq))))
|
|
t, nInv := float32(0), 1/float32(n)
|
|
for i := 0; i < n-1; i++ {
|
|
t += nInv
|
|
|
|
mt := 1 - t
|
|
t1 := mt * mt
|
|
t2 := mt * t * 2
|
|
t3 := t * t
|
|
LineTo(
|
|
ax*t1+bx*t2+cx*t3,
|
|
ay*t1+by*t2+cy*t3)
|
|
}
|
|
}
|
|
LineTo(cx, cy)
|
|
}
|
|
|
|
// CubeTo flattens the cubic Bezier curve into lines through the LineTo func
|
|
// This functions is adapted from the version found in
|
|
// golang.org/x/image/vector
|
|
func CubeTo(ax, ay, bx, by, cx, cy, dx, dy float32, LineTo func(ex, ey float32)) {
|
|
devsq := devSquared(ax, ay, bx, by, dx, dy)
|
|
if devsqAlt := devSquared(ax, ay, cx, cy, dx, dy); devsq < devsqAlt {
|
|
devsq = devsqAlt
|
|
}
|
|
if devsq >= 0.333 {
|
|
const tol = 3
|
|
n := 1 + int(math.Sqrt(math.Sqrt(tol*float64(devsq))))
|
|
t, nInv := float32(0), 1/float32(n)
|
|
for i := 0; i < n-1; i++ {
|
|
t += nInv
|
|
|
|
tsq := t * t
|
|
mt := 1 - t
|
|
mtsq := mt * mt
|
|
t1 := mtsq * mt
|
|
t2 := mtsq * t * 3
|
|
t3 := mt * tsq * 3
|
|
t4 := tsq * t
|
|
LineTo(
|
|
ax*t1+bx*t2+cx*t3+dx*t4,
|
|
ay*t1+by*t2+cy*t3+dy*t4)
|
|
}
|
|
}
|
|
LineTo(dx, dy)
|
|
}
|
|
|
|
// devSquared returns a measure of how curvy the sequence (ax, ay) to (bx, by)
|
|
// to (cx, cy) is. It determines how many line segments will approximate a
|
|
// Bézier curve segment. This functions is copied from the version found in
|
|
// golang.org/x/image/vector as are the below comments.
|
|
//
|
|
// http://lists.nongnu.org/archive/html/freetype-devel/2016-08/msg00080.html
|
|
// gives the rationale for this evenly spaced heuristic instead of a recursive
|
|
// de Casteljau approach:
|
|
//
|
|
// The reason for the subdivision by n is that I expect the "flatness"
|
|
// computation to be semi-expensive (it's done once rather than on each
|
|
// potential subdivision) and also because you'll often get fewer subdivisions.
|
|
// Taking a circular arc as a simplifying assumption (ie a spherical cow),
|
|
// where I get n, a recursive approach would get 2^⌈lg n⌉, which, if I haven't
|
|
// made any horrible mistakes, is expected to be 33% more in the limit.
|
|
func devSquared(ax, ay, bx, by, cx, cy float32) float32 {
|
|
devx := ax - 2*bx + cx
|
|
devy := ay - 2*by + cy
|
|
return devx*devx + devy*devy
|
|
}
|
|
|
|
// QuadBezierF adds a quadratic segment to the sgm Rasterizer.
|
|
func (r *Filler) QuadBezierF(sgm Rasterx, b, c fixed.Point26_6) {
|
|
// check for degenerate bezier
|
|
if r.a == b || b == c {
|
|
sgm.Line(c)
|
|
return
|
|
}
|
|
sgm.joinF()
|
|
QuadTo(float32(r.a.X), float32(r.a.Y), // Pts are x64, but does not matter.
|
|
float32(b.X), float32(b.Y),
|
|
float32(c.X), float32(c.Y),
|
|
func(dx, dy float32) {
|
|
sgm.lineF(fixed.Point26_6{X: fixed.Int26_6(dx), Y: fixed.Int26_6(dy)})
|
|
})
|
|
|
|
}
|
|
|
|
// CubeBezier adds a cubic bezier to the curve
|
|
func (r *Filler) CubeBezier(b, c, d fixed.Point26_6) {
|
|
r.CubeBezierF(r, b, c, d)
|
|
}
|
|
|
|
// joinF is a no-op for a filling rasterizer. This is used in stroking and dashed
|
|
// stroking
|
|
func (r *Filler) joinF() {
|
|
|
|
}
|
|
|
|
// Line for a filling rasterizer is just the line call in scan
|
|
func (r *Filler) Line(b fixed.Point26_6) {
|
|
r.lineF(b)
|
|
}
|
|
|
|
// lineF for a filling rasterizer is just the line call in scan
|
|
func (r *Filler) lineF(b fixed.Point26_6) {
|
|
r.Scanner.Line(b)
|
|
r.a = b
|
|
}
|
|
|
|
// CubeBezierF adds a cubic bezier to the curve. sending the line calls the the
|
|
// sgm Rasterizer
|
|
func (r *Filler) CubeBezierF(sgm Rasterx, b, c, d fixed.Point26_6) {
|
|
if (r.a == b && c == d) || (r.a == b && b == c) || (c == b && d == c) {
|
|
sgm.Line(d)
|
|
return
|
|
}
|
|
sgm.joinF()
|
|
CubeTo(float32(r.a.X), float32(r.a.Y),
|
|
float32(b.X), float32(b.Y),
|
|
float32(c.X), float32(c.Y),
|
|
float32(d.X), float32(d.Y),
|
|
func(ex, ey float32) {
|
|
sgm.lineF(fixed.Point26_6{X: fixed.Int26_6(ex), Y: fixed.Int26_6(ey)})
|
|
})
|
|
}
|
|
|
|
// Clear resets the filler
|
|
func (r *Filler) Clear() {
|
|
r.a = fixed.Point26_6{}
|
|
r.first = r.a
|
|
r.Scanner.Clear()
|
|
}
|
|
|
|
// SetBounds sets the maximum width and height of the rasterized image and
|
|
// calls Clear. The width and height are in pixels, not fixed.Int26_6 units.
|
|
func (r *Filler) SetBounds(width, height int) {
|
|
if width < 0 {
|
|
width = 0
|
|
}
|
|
if height < 0 {
|
|
height = 0
|
|
}
|
|
r.Scanner.SetBounds(width, height)
|
|
r.Clear()
|
|
}
|
|
|
|
// NewFiller returns a Filler ptr with default values.
|
|
// A Filler in addition to rasterizing lines like a Scann,
|
|
// can also rasterize quadratic and cubic bezier curves.
|
|
// If Scanner is nil default scanner ScannerGV is used
|
|
func NewFiller(width, height int, scanner Scanner) *Filler {
|
|
r := new(Filler)
|
|
r.Scanner = scanner
|
|
r.SetBounds(width, height)
|
|
r.SetWinding(true)
|
|
return r
|
|
}
|