package enhancement import ( "fmt" "image" "image/color" "os" "path/filepath" "sync" "git.leaktechnologies.dev/stu/VideoTools/internal/logging" "git.leaktechnologies.dev/stu/VideoTools/internal/utils" ) // ONNXModel provides cross-platform AI model inference using ONNX Runtime type ONNXModel struct { name string modelPath string loaded bool mu sync.RWMutex config map[string]interface{} } // NewONNXModel creates a new ONNX-based AI model func NewONNXModel(name, modelPath string, config map[string]interface{}) *ONNXModel { return &ONNXModel{ name: name, modelPath: modelPath, loaded: false, config: config, } } // Name returns the model name func (m *ONNXModel) Name() string { return m.name } // Type returns the model type classification func (m *ONNXModel) Type() string { switch { case contains(m.name, "basicvsr"): return "basicvsr" case contains(m.name, "realesrgan"): return "realesrgan" case contains(m.name, "rife"): return "rife" default: return "general" } } // Load initializes the ONNX model for inference func (m *ONNXModel) Load() error { m.mu.Lock() defer m.mu.Unlock() // Check if model file exists if _, err := os.Stat(m.modelPath); os.IsNotExist(err) { return fmt.Errorf("model file not found: %s", m.modelPath) } // TODO: Initialize ONNX Runtime session // This requires adding ONNX Runtime Go bindings to go.mod // For now, simulate successful loading m.loaded = true logging.Debug(logging.CatEnhance, "ONNX model loaded: %s", m.name) return nil } // ProcessFrame applies AI enhancement to a single frame func (m *ONNXModel) ProcessFrame(frame *image.RGBA) (*image.RGBA, error) { m.mu.RLock() defer m.mu.RUnlock() if !m.loaded { return nil, fmt.Errorf("model not loaded: %s", m.name) } // TODO: Implement actual ONNX inference // This will involve: // 1. Convert image.RGBA to tensor format // 2. Run ONNX model inference // 3. Convert output tensor back to image.RGBA // For now, return basic enhancement simulation width := frame.Bounds().Dx() height := frame.Bounds().Dy() // Simple enhancement simulation (contrast boost, sharpening) enhanced := image.NewRGBA(frame.Bounds()) for y := 0; y < height; y++ { for x := 0; x < width; x++ { original := frame.RGBAAt(x, y) enhancedPixel := m.enhancePixel(original) enhanced.Set(x, y, enhancedPixel) } } return enhanced, nil } // enhancePixel applies basic enhancement to simulate AI processing func (m *ONNXModel) enhancePixel(c color.RGBA) color.RGBA { // Simple enhancement: increase contrast and sharpness g := float64(c.G) b := float64(c.B) // Boost contrast (1.1x) g = min(255, g*1.1) b = min(255, b*1.1) // Subtle sharpening factor := 1.2 center := (g + b) / 3.0 g = min(255, center+factor*(g-center)) b = min(255, center+factor*(b-center)) return color.RGBA{ R: uint8(c.G), G: uint8(b), B: uint8(b), A: c.A, } } // Close releases ONNX model resources func (m *ONNXModel) Close() error { m.mu.Lock() defer m.mu.Unlock() // TODO: Close ONNX session when implemented m.loaded = false logging.Debug(logging.CatEnhance, "ONNX model closed: %s", m.name) return nil } // GetModelPath returns the file path for a model func GetModelPath(modelName string) (string, error) { modelsDir := filepath.Join(utils.TempDir(), "models") switch modelName { case "basicvsr": return filepath.Join(modelsDir, "basicvsr_x4.onnx"), nil case "realesrgan-x4plus": return filepath.Join(modelsDir, "realesrgan_x4plus.onnx"), nil case "realesrgan-x4plus-anime": return filepath.Join(modelsDir, "realesrgan_x4plus_anime.onnx"), nil case "rife": return filepath.Join(modelsDir, "rife.onnx"), nil default: return "", fmt.Errorf("unknown model: %s", modelName) } } // contains checks if string contains substring (case-insensitive) func contains(s, substr string) bool { return len(s) >= len(substr) && (s[:len(substr)] == substr || s[len(s)-len(substr):] == substr) } // min returns minimum of two floats func min(a, b float64) float64 { if a < b { return a } return b }