package enhancement import ( "context" "fmt" "image" "image/color" "strings" "time" "git.leaktechnologies.dev/stu/VideoTools/internal/logging" "git.leaktechnologies.dev/stu/VideoTools/internal/player" "git.leaktechnologies.dev/stu/VideoTools/internal/utils" ) // AIModel interface defines the contract for video enhancement models type AIModel interface { Name() string Type() string // "basicvsr", "realesrgan", "rife", "realcugan" Load() error ProcessFrame(frame *image.RGBA) (*image.RGBA, error) Close() error } // SkinToneAnalysis represents detailed skin tone analysis for enhancement type SkinToneAnalysis struct { DetectedSkinTones []string // List of detected skin tones SkinSaturation float64 // 0.0-1.0 SkinBrightness float64 // 0.0-1.0 SkinWarmth float64 // -1.0 to 1.0 (negative=cool, positive=warm) SkinContrast float64 // 0.0-2.0 (1.0=normal) DetectedHemoglobin []string // Detected hemoglobin levels/characteristics IsAdultContent bool // Whether adult content was detected RecommendedProfile string // Recommended enhancement profile } // ContentAnalysis represents video content analysis results type ContentAnalysis struct { Type string // "general", "anime", "film", "interlaced", "adult" Quality float64 // 0.0-1.0 Resolution int64 FrameRate float64 Artifacts []string // ["noise", "compression", "film_grain", "skin_tones"] Confidence float64 // AI model confidence in analysis SkinTones *SkinToneAnalysis // Detailed skin analysis } // EnhancementConfig configures the enhancement process type EnhancementConfig struct { Model string // AI model name (auto, basicvsr, realesrgan, etc.) TargetResolution string // target resolution (match_source, 720p, 1080p, 4K, etc.) QualityPreset string // fast, balanced, high ContentDetection bool // enable content-aware processing GPUAcceleration bool // use GPU acceleration if available TileSize int // tile size for memory-efficient processing PreviewMode bool // enable real-time preview PreserveSkinTones bool // preserve natural skin tones (red/pink) instead of washing out SkinToneMode string // off, conservative, balanced, professional AdultContent bool // enable adult content optimization Parameters map[string]interface{} // model-specific parameters } // EnhancementProgress tracks enhancement progress type EnhancementProgress struct { CurrentFrame int64 TotalFrames int64 PercentComplete float64 CurrentTask string EstimatedTime time.Duration PreviewImage *image.RGBA } // EnhancementCallbacks for progress updates and UI integration type EnhancementCallbacks struct { OnProgress func(progress EnhancementProgress) OnPreviewUpdate func(frame int64, img image.Image) OnComplete func(success bool, message string) OnError func(err error) } // EnhancementModule provides unified video enhancement combining Filters + Upscale // with content-aware processing and AI model management type EnhancementModule struct { player player.VTPlayer // Unified player for frame extraction config EnhancementConfig callbacks EnhancementCallbacks currentModel AIModel analysis *ContentAnalysis progress EnhancementProgress ctx context.Context cancel context.CancelFunc // Processing state active bool inputPath string outputPath string tempDir string } // NewEnhancementModule creates a new enhancement module instance func NewEnhancementModule(player player.VTPlayer) *EnhancementModule { ctx, cancel := context.WithCancel(context.Background()) return &EnhancementModule{ player: player, config: EnhancementConfig{ Model: "auto", TargetResolution: "match_source", QualityPreset: "balanced", ContentDetection: true, GPUAcceleration: true, TileSize: 512, PreviewMode: false, Parameters: make(map[string]interface{}), }, callbacks: EnhancementCallbacks{}, ctx: ctx, cancel: cancel, progress: EnhancementProgress{}, } } // AnalyzeContent performs intelligent content analysis using FFmpeg func (m *EnhancementModule) AnalyzeContent(path string) (*ContentAnalysis, error) { logging.Debug(logging.CatEnhance, "Starting content analysis for: %s", path) // Use FFprobe to get video information cmd := utils.CreateCommand(m.ctx, utils.GetFFprobePath(), "-v", "error", "-select_streams", "v:0", "-show_entries", "stream=r_frame_rate,width,height,duration,bit_rate,pix_fmt", "-show_entries", "format=format_name,duration", path, ) output, err := cmd.CombinedOutput() if err != nil { return nil, fmt.Errorf("content analysis failed: %w", err) } // Parse FFprobe output to extract video characteristics contentAnalysis := &ContentAnalysis{ Type: m.detectContentType(path, output), Quality: m.estimateQuality(output), Resolution: 1920, // Default, will be updated from FFprobe output FrameRate: 30.0, // Default, will be updated from FFprobe output Artifacts: m.detectArtifacts(output), Confidence: 0.8, // Default confidence } // TODO: Implement advanced skin tone analysis with melanin/hemoglobin detection // For now, use default skin analysis // Advanced skin analysis for Phase 2.5 advancedSkinAnalysis := m.analyzeSkinTonesAdvanced(output) // Update content analysis with advanced skin tone information contentAnalysis.SkinTones = advancedSkinAnalysis logging.Debug(logging.CatEnhance, "Advanced skin analysis applied: %+v", advancedSkinAnalysis) return contentAnalysis, nil } // analyzeSkinTonesAdvanced performs sophisticated skin analysis for Phase 2.5 func (m *EnhancementModule) analyzeSkinTonesAdvanced(ffprobeOutput []byte) *SkinToneAnalysis { // Default analysis for when content detection is disabled if !m.config.ContentDetection { return &SkinToneAnalysis{ DetectedSkinTones: []string{"neutral"}, // Default tone SkinSaturation: 0.5, // Average saturation SkinBrightness: 0.5, // Average brightness SkinWarmth: 0.0, // Neutral warmth SkinContrast: 1.0, // Normal contrast DetectedHemoglobin: []string{"unknown"}, // Would be analyzed from frames IsAdultContent: false, // Default until frame analysis RecommendedProfile: "balanced", // Default enhancement profile } } // Parse FFprobe output for advanced skin analysis (placeholder for future use) _ = strings.Split(string(ffprobeOutput), "\n") // Initialize advanced analysis structure analysis := &SkinToneAnalysis{ DetectedSkinTones: []string{}, // Will be detected from frames SkinSaturation: 0.5, // Average saturation SkinBrightness: 0.5, // Average brightness SkinWarmth: 0.0, // Neutral warmth SkinContrast: 1.0, // Normal contrast DetectedHemoglobin: []string{}, // Would be analyzed from frames IsAdultContent: false, // Default until frame analysis RecommendedProfile: "balanced", // Default enhancement profile } // TODO: Advanced frame-by-frame skin tone detection would use: // - frameCount for tracking processed frames // - skinToneHistogram for tone distribution // - totalSaturation, totalBrightness, totalWarmth, totalCoolness for averages // This will be implemented when video frame processing is added return analysis } // detectContentType determines if content is anime, film, or general func (m *EnhancementModule) detectContentType(path string, ffprobeOutput []byte) string { // Simple heuristic-based detection pathLower := strings.ToLower(path) if strings.Contains(pathLower, "anime") || strings.Contains(pathLower, "manga") { return "anime" } // TODO: Implement more sophisticated content detection // Could use frame analysis, motion patterns, etc. return "general" } // estimateQuality estimates video quality from technical parameters func (m *EnhancementModule) estimateQuality(ffprobeOutput []byte) float64 { // TODO: Implement quality estimation based on: // - Bitrate vs resolution ratio // - Compression artifacts // - Frame consistency return 0.7 // Default reasonable quality } // detectArtifacts identifies compression and quality artifacts func (m *EnhancementModule) detectArtifacts(ffprobeOutput []byte) []string { // TODO: Implement artifact detection for: // - Compression blocking // - Color banding // - Noise patterns // - Film grain return []string{"compression"} // Default } // SelectModel chooses the optimal AI model based on content analysis func (m *EnhancementModule) SelectModel(analysis *ContentAnalysis) string { if m.config.Model != "auto" { return m.config.Model } switch analysis.Type { case "anime": return "realesrgan-x4plus-anime" // Anime-optimized case "film": return "basicvsr" // Film restoration case "adult": // Adult content optimization - preserve natural tones if analysis.SkinTones != nil { switch m.config.SkinToneMode { case "professional", "conservative": return "realesrgan-x4plus-skin-preserve" case "balanced": return "realesrgan-x4plus-skin-enhance" default: return "realesrgan-x4plus-anime" // Fallback to anime model } } return "realesrgan-x4plus-skin-preserve" // Default for adult content default: return "realesrgan-x4plus" // General purpose } } // ProcessVideo processes video through the enhancement pipeline func (m *EnhancementModule) ProcessVideo(inputPath, outputPath string) error { logging.Debug(logging.CatEnhance, "Starting video enhancement: %s -> %s", inputPath, outputPath) m.inputPath = inputPath m.outputPath = outputPath m.active = true // Analyze content first analysis, err := m.AnalyzeContent(inputPath) if err != nil { return fmt.Errorf("content analysis failed: %w", err) } m.analysis = analysis // Select appropriate model modelName := m.SelectModel(analysis) logging.Debug(logging.CatEnhance, "Selected model: %s for content type: %s", modelName, analysis.Type) // Load the AI model model, err := m.loadModel(modelName) if err != nil { return fmt.Errorf("failed to load model %s: %w", modelName, err) } m.currentModel = model defer model.Close() // Load video in unified player err = m.player.Load(inputPath, 0) if err != nil { return fmt.Errorf("failed to load video: %w", err) } defer m.player.Close() // Get video info videoInfo := m.player.GetVideoInfo() m.progress.TotalFrames = videoInfo.FrameCount m.progress.CurrentFrame = 0 m.progress.PercentComplete = 0.0 // Process frame by frame for m.active && m.progress.CurrentFrame < m.progress.TotalFrames { select { case <-m.ctx.Done(): return fmt.Errorf("enhancement cancelled") default: // Extract current frame from player frame, err := m.extractCurrentFrame() if err != nil { logging.Error(logging.CatEnhance, "Frame extraction failed: %v", err) continue } // Apply AI enhancement to frame enhancedFrame, err := m.currentModel.ProcessFrame(frame) if err != nil { logging.Error(logging.CatEnhance, "Frame enhancement failed: %v", err) continue } // Update progress m.progress.CurrentFrame++ m.progress.PercentComplete = float64(m.progress.CurrentFrame) / float64(m.progress.TotalFrames) m.progress.CurrentTask = fmt.Sprintf("Processing frame %d/%d", m.progress.CurrentFrame, m.progress.TotalFrames) // Send preview update if enabled if m.config.PreviewMode && m.callbacks.OnPreviewUpdate != nil { m.callbacks.OnPreviewUpdate(m.progress.CurrentFrame, enhancedFrame) } // Send progress update if m.callbacks.OnProgress != nil { m.callbacks.OnProgress(m.progress) } } } // Reassemble enhanced video from frames err = m.reassembleEnhancedVideo() if err != nil { return fmt.Errorf("video reassembly failed: %w", err) } // Call completion callback if m.callbacks.OnComplete != nil { m.callbacks.OnComplete(true, fmt.Sprintf("Enhancement completed using %s model", modelName)) } m.active = false logging.Debug(logging.CatEnhance, "Video enhancement completed successfully") return nil } // loadModel instantiates and returns an AI model instance func (m *EnhancementModule) loadModel(modelName string) (AIModel, error) { switch modelName { case "basicvsr": return NewBasicVSRModel(m.config.Parameters) case "realesrgan-x4plus": return NewRealESRGANModel(m.config.Parameters) case "realesrgan-x4plus-anime": return NewRealESRGANAnimeModel(m.config.Parameters) default: return nil, fmt.Errorf("unsupported model: %s", modelName) } } // Placeholder model constructors - will be implemented in Phase 2.2 func NewBasicVSRModel(params map[string]interface{}) (AIModel, error) { return &placeholderModel{name: "basicvsr"}, nil } func NewRealESRGANModel(params map[string]interface{}) (AIModel, error) { return &placeholderModel{name: "realesrgan-x4plus"}, nil } func NewRealESRGANAnimeModel(params map[string]interface{}) (AIModel, error) { return &placeholderModel{name: "realesrgan-x4plus-anime"}, nil } // placeholderModel implements AIModel interface for development type placeholderModel struct { name string } func (p *placeholderModel) Name() string { return p.name } func (p *placeholderModel) Type() string { return "placeholder" } func (p *placeholderModel) Load() error { return nil } func (p *placeholderModel) ProcessFrame(frame *image.RGBA) (*image.RGBA, error) { // TODO: Implement actual AI processing return frame, nil } func (p *placeholderModel) Close() error { return nil } // extractCurrentFrame extracts the current frame from the unified player func (m *EnhancementModule) extractCurrentFrame() (*image.RGBA, error) { // Interface with the unified player's frame extraction // The unified player should provide frame access methods // For now, simulate frame extraction from player // In full implementation, this would call m.player.ExtractCurrentFrame() // Create a dummy frame for testing frame := image.NewRGBA(image.Rect(0, 0, 1920, 1080)) // Fill with a test pattern for y := 0; y < 1080; y++ { for x := 0; x < 1920; x++ { // Create a simple gradient pattern frame.Set(x, y, color.RGBA{ R: uint8(x / 8), G: uint8(y / 8), B: uint8(255), A: 255, }) } } return frame, nil } // reassembleEnhancedVideo reconstructs the video from enhanced frames func (m *EnhancementModule) reassembleEnhancedVideo() error { // This will use FFmpeg to reconstruct video from enhanced frames // Implementation will use the temp directory for frame storage return fmt.Errorf("video reassembly not yet implemented") } // Cancel stops the enhancement process func (m *EnhancementModule) Cancel() { if m.active { m.active = false m.cancel() logging.Debug(logging.CatEnhance, "Enhancement cancelled") } } // SetConfig updates the enhancement configuration func (m *EnhancementModule) SetConfig(config EnhancementConfig) { m.config = config } // GetConfig returns the current enhancement configuration func (m *EnhancementModule) GetConfig() EnhancementConfig { return m.config } // SetCallbacks sets the enhancement progress callbacks func (m *EnhancementModule) SetCallbacks(callbacks EnhancementCallbacks) { m.callbacks = callbacks } // GetProgress returns current enhancement progress func (m *EnhancementModule) GetProgress() EnhancementProgress { return m.progress } // IsActive returns whether enhancement is currently running func (m *EnhancementModule) IsActive() bool { return m.active }