VT_Player/third_party/gotk3/glib/glib.go
Stu d4efa91ce1 Add vendored gotk3 GTK3 bindings for Go
Vendor gotk3 library to ensure consistent GTK3 bindings across
environments and simplify dependency management.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
2025-12-15 05:40:43 -05:00

1475 lines
41 KiB
Go

// Copyright (c) 2013-2014 Conformal Systems <info@conformal.com>
//
// This file originated from: http://opensource.conformal.com/
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// Package glib provides Go bindings for GLib 2. It supports version 2.36 and
// later.
package glib
// #cgo pkg-config: gio-2.0 glib-2.0 gobject-2.0
// #include <gio/gio.h>
// #include <stdlib.h>
// #include <glib.h>
// #include <glib-object.h>
// #include "glib.go.h"
import "C"
import (
"errors"
"fmt"
"reflect"
"runtime"
"unsafe"
"github.com/gotk3/gotk3/internal/callback"
"github.com/gotk3/gotk3/internal/closure"
)
/*
* Type conversions
*/
func gbool(b bool) C.gboolean {
if b {
return C.gboolean(1)
}
return C.gboolean(0)
}
func gobool(b C.gboolean) bool {
if b != 0 {
return true
}
return false
}
/*
* Unexported vars
*/
var nilPtrErr = errors.New("cgo returned unexpected nil pointer")
/*
* Constants
*/
// Type is a representation of GLib's GType.
type Type uint
const (
TYPE_INVALID Type = C.G_TYPE_INVALID
TYPE_NONE Type = C.G_TYPE_NONE
TYPE_INTERFACE Type = C.G_TYPE_INTERFACE
TYPE_CHAR Type = C.G_TYPE_CHAR
TYPE_UCHAR Type = C.G_TYPE_UCHAR
TYPE_BOOLEAN Type = C.G_TYPE_BOOLEAN
TYPE_INT Type = C.G_TYPE_INT
TYPE_UINT Type = C.G_TYPE_UINT
TYPE_LONG Type = C.G_TYPE_LONG
TYPE_ULONG Type = C.G_TYPE_ULONG
TYPE_INT64 Type = C.G_TYPE_INT64
TYPE_UINT64 Type = C.G_TYPE_UINT64
TYPE_ENUM Type = C.G_TYPE_ENUM
TYPE_FLAGS Type = C.G_TYPE_FLAGS
TYPE_FLOAT Type = C.G_TYPE_FLOAT
TYPE_DOUBLE Type = C.G_TYPE_DOUBLE
TYPE_STRING Type = C.G_TYPE_STRING
TYPE_POINTER Type = C.G_TYPE_POINTER
TYPE_BOXED Type = C.G_TYPE_BOXED
TYPE_PARAM Type = C.G_TYPE_PARAM
TYPE_OBJECT Type = C.G_TYPE_OBJECT
TYPE_VARIANT Type = C.G_TYPE_VARIANT
)
// IsValue checks whether the passed in type can be used for g_value_init().
func (t Type) IsValue() bool {
return gobool(C._g_type_is_value(C.GType(t)))
}
// Name is a wrapper around g_type_name().
func (t Type) Name() string {
return C.GoString((*C.char)(C.g_type_name(C.GType(t))))
}
// Depth is a wrapper around g_type_depth().
func (t Type) Depth() uint {
return uint(C.g_type_depth(C.GType(t)))
}
// Parent is a wrapper around g_type_parent().
func (t Type) Parent() Type {
return Type(C.g_type_parent(C.GType(t)))
}
// IsA is a wrapper around g_type_is_a().
func (t Type) IsA(isAType Type) bool {
return gobool(C.g_type_is_a(C.GType(t), C.GType(isAType)))
}
// TypeFromName is a wrapper around g_type_from_name
func TypeFromName(typeName string) Type {
cstr := (*C.gchar)(C.CString(typeName))
defer C.free(unsafe.Pointer(cstr))
return Type(C.g_type_from_name(cstr))
}
//TypeNextBase is a wrapper around g_type_next_base
func TypeNextBase(leafType, rootType Type) Type {
return Type(C.g_type_next_base(C.GType(leafType), C.GType(rootType)))
}
// SettingsBindFlags is a representation of GLib's GSettingsBindFlags.
type SettingsBindFlags int
const (
SETTINGS_BIND_DEFAULT SettingsBindFlags = C.G_SETTINGS_BIND_DEFAULT
SETTINGS_BIND_GET SettingsBindFlags = C.G_SETTINGS_BIND_GET
SETTINGS_BIND_SET SettingsBindFlags = C.G_SETTINGS_BIND_SET
SETTINGS_BIND_NO_SENSITIVITY SettingsBindFlags = C.G_SETTINGS_BIND_NO_SENSITIVITY
SETTINGS_BIND_GET_NO_CHANGES SettingsBindFlags = C.G_SETTINGS_BIND_GET_NO_CHANGES
SETTINGS_BIND_INVERT_BOOLEAN SettingsBindFlags = C.G_SETTINGS_BIND_INVERT_BOOLEAN
)
// UserDirectory is a representation of GLib's GUserDirectory.
type UserDirectory int
const (
USER_DIRECTORY_DESKTOP UserDirectory = C.G_USER_DIRECTORY_DESKTOP
USER_DIRECTORY_DOCUMENTS UserDirectory = C.G_USER_DIRECTORY_DOCUMENTS
USER_DIRECTORY_DOWNLOAD UserDirectory = C.G_USER_DIRECTORY_DOWNLOAD
USER_DIRECTORY_MUSIC UserDirectory = C.G_USER_DIRECTORY_MUSIC
USER_DIRECTORY_PICTURES UserDirectory = C.G_USER_DIRECTORY_PICTURES
USER_DIRECTORY_PUBLIC_SHARE UserDirectory = C.G_USER_DIRECTORY_PUBLIC_SHARE
USER_DIRECTORY_TEMPLATES UserDirectory = C.G_USER_DIRECTORY_TEMPLATES
USER_DIRECTORY_VIDEOS UserDirectory = C.G_USER_DIRECTORY_VIDEOS
)
const USER_N_DIRECTORIES int = C.G_USER_N_DIRECTORIES
/*
* GApplicationFlags
*/
type ApplicationFlags int
const (
APPLICATION_FLAGS_NONE ApplicationFlags = C.G_APPLICATION_FLAGS_NONE
APPLICATION_IS_SERVICE ApplicationFlags = C.G_APPLICATION_IS_SERVICE
APPLICATION_HANDLES_OPEN ApplicationFlags = C.G_APPLICATION_HANDLES_OPEN
APPLICATION_HANDLES_COMMAND_LINE ApplicationFlags = C.G_APPLICATION_HANDLES_COMMAND_LINE
APPLICATION_SEND_ENVIRONMENT ApplicationFlags = C.G_APPLICATION_SEND_ENVIRONMENT
APPLICATION_NON_UNIQUE ApplicationFlags = C.G_APPLICATION_NON_UNIQUE
)
// goMarshal is called by the GLib runtime when a closure needs to be invoked.
// The closure will be invoked with as many arguments as it can take, from 0 to
// the full amount provided by the call. If the closure asks for more parameters
// than there are to give, then a runtime panic will occur.
//
//export goMarshal
func goMarshal(
gclosure *C.GClosure,
retValue *C.GValue,
nParams C.guint,
params *C.GValue,
invocationHint C.gpointer,
marshalData *C.GValue) {
// Get the function value associated with this callback closure.
fs := closure.Get(unsafe.Pointer(gclosure))
if !fs.IsValid() {
// Possible data race, bail.
return
}
fsType := fs.Func.Type()
// Get number of parameters passed in.
nGLibParams := int(nParams)
nTotalParams := nGLibParams
// Reflect may panic, so we defer recover here to re-panic with our trace.
defer fs.TryRepanic()
// Get number of parameters from the callback closure. If this exceeds
// the total number of marshaled parameters, trigger a runtime panic.
nCbParams := fsType.NumIn()
if nCbParams > nTotalParams {
fs.Panicf("too many closure args: have %d, max %d", nCbParams, nTotalParams)
}
// Create a slice of reflect.Values as arguments to call the function.
gValues := gValueSlice(params, nCbParams)
args := make([]reflect.Value, 0, nCbParams)
// Fill beginning of args, up to the minimum of the total number of callback
// parameters and parameters from the glib runtime.
for i := 0; i < nCbParams && i < nGLibParams; i++ {
v := Value{&gValues[i]}
val, err := v.GoValue()
if err != nil {
fs.Panicf("no suitable Go value for arg %d: %v", i, err)
}
// Parameters that are descendants of GObject come wrapped in another
// GObject. For C applications, the default marshaller
// (g_cclosure_marshal_VOID__VOID in gmarshal.c in the GTK glib library)
// 'peeks' into the enclosing object and passes the wrapped object to
// the handler. Use the *Object.goValue function to emulate that for Go
// signal handlers.
switch objVal := val.(type) {
case *Object:
if innerVal, err := objVal.goValue(); err == nil {
val = innerVal
}
case *Variant:
switch ts := objVal.TypeString(); ts {
case "s":
val = objVal.GetString()
case "b":
val = gobool(C.g_variant_get_boolean(objVal.native()))
case "d":
val = float64(C.g_variant_get_double(objVal.native()))
case "n":
val = int16(C.g_variant_get_int16(objVal.native()))
case "i":
val = int32(C.g_variant_get_int32(objVal.native()))
case "x":
val = int64(C.g_variant_get_int64(objVal.native()))
case "y":
val = uint8(C.g_variant_get_byte(objVal.native()))
case "q":
val = uint16(C.g_variant_get_uint16(objVal.native()))
case "u":
val = uint32(C.g_variant_get_uint32(objVal.native()))
case "t":
val = uint64(C.g_variant_get_uint64(objVal.native()))
default:
fs.Panicf("variant conversion not yet implemented for type %s", ts)
}
}
args = append(args, reflect.ValueOf(val).Convert(fsType.In(i)))
}
// Call closure with args. If the callback returns one or more values, save
// the GValue equivalent of the first.
rv := fs.Func.Call(args)
if retValue != nil && len(rv) > 0 {
g, err := GValue(rv[0].Interface())
if err != nil {
fs.Panicf("cannot save callback return value: %v", err)
}
t, _, err := g.Type()
if err != nil {
fs.Panicf("cannot determine callback return value: %v", err)
}
// Explicitly copy the return value as it may point to go-owned memory.
C.g_value_unset(retValue)
C.g_value_init(retValue, C.GType(t))
C.g_value_copy(g.native(), retValue)
}
}
// gValueSlice converts a C array of GValues to a Go slice.
func gValueSlice(values *C.GValue, nValues int) (slice []C.GValue) {
header := (*reflect.SliceHeader)((unsafe.Pointer(&slice)))
header.Cap = nValues
header.Len = nValues
header.Data = uintptr(unsafe.Pointer(values))
return
}
/*
* Main event loop
*/
// Priority is the enumerated type for GLib priority event sources.
type Priority int
const (
PRIORITY_HIGH Priority = C.G_PRIORITY_HIGH
PRIORITY_DEFAULT Priority = C.G_PRIORITY_DEFAULT // TimeoutAdd
PRIORITY_HIGH_IDLE Priority = C.G_PRIORITY_HIGH_IDLE
PRIORITY_DEFAULT_IDLE Priority = C.G_PRIORITY_DEFAULT_IDLE // IdleAdd
PRIORITY_LOW Priority = C.G_PRIORITY_LOW
)
type SourceHandle uint
// sourceFunc is the callback for g_idle_add_full and g_timeout_add_full that
// replaces the GClosure API.
//
//export sourceFunc
func sourceFunc(data C.gpointer) C.gboolean {
v := callback.Get(uintptr(data))
fs := v.(closure.FuncStack)
rv := fs.Func.Call(nil)
if len(rv) == 1 && rv[0].Bool() {
return C.TRUE
}
return C.FALSE
}
//export removeSourceFunc
func removeSourceFunc(data C.gpointer) {
callback.Delete(uintptr(data))
}
var (
_sourceFunc = (*[0]byte)(C.sourceFunc)
_removeSourceFunc = (*[0]byte)(C.removeSourceFunc)
)
// IdleAdd adds an idle source to the default main event loop context with the
// DefaultIdle priority. If f is not a function with no parameter, then IdleAdd
// will panic.
//
// After running once, the source func will be removed from the main event loop,
// unless f returns a single bool true.
func IdleAdd(f interface{}) SourceHandle {
return idleAdd(PRIORITY_DEFAULT_IDLE, f)
}
// IdleAddPriority adds an idle source to the default main event loop context
// with the given priority. Its behavior is the same as IdleAdd.
func IdleAddPriority(priority Priority, f interface{}) SourceHandle {
return idleAdd(priority, f)
}
func idleAdd(priority Priority, f interface{}) SourceHandle {
fs := closure.NewIdleFuncStack(f, 2)
id := C.gpointer(callback.Assign(fs))
h := C.g_idle_add_full(C.gint(priority), _sourceFunc, id, _removeSourceFunc)
return SourceHandle(h)
}
// TimeoutAdd adds an timeout source to the default main event loop context.
// Timeout is in milliseconds. If f is not a function with no parameter, then it
// will panic.
//
// After running once, the source func will be removed from the main event loop,
// unless f returns a single bool true.
func TimeoutAdd(milliseconds uint, f interface{}) SourceHandle {
return timeoutAdd(milliseconds, false, PRIORITY_DEFAULT, f)
}
// TimeoutAddPriority is similar to TimeoutAdd with the given priority. Refer to
// TimeoutAdd for more information.
func TimeoutAddPriority(milliseconds uint, priority Priority, f interface{}) SourceHandle {
return timeoutAdd(milliseconds, false, priority, f)
}
// TimeoutSecondsAdd is similar to TimeoutAdd, except with seconds granularity.
func TimeoutSecondsAdd(seconds uint, f interface{}) SourceHandle {
return timeoutAdd(seconds, true, PRIORITY_DEFAULT, f)
}
// TimeoutSecondsAddPriority adds a timeout source with the given priority.
// Refer to TimeoutSecondsAdd for more information.
func TimeoutSecondsAddPriority(seconds uint, priority Priority, f interface{}) SourceHandle {
return timeoutAdd(seconds, true, priority, f)
}
func timeoutAdd(time uint, sec bool, priority Priority, f interface{}) SourceHandle {
fs := closure.NewIdleFuncStack(f, 2)
id := C.gpointer(callback.Assign(fs))
var h C.guint
if sec {
h = C.g_timeout_add_seconds_full(C.gint(priority), C.guint(time), _sourceFunc, id, _removeSourceFunc)
} else {
h = C.g_timeout_add_full(C.gint(priority), C.guint(time), _sourceFunc, id, _removeSourceFunc)
}
return SourceHandle(h)
}
// Destroy is a wrapper around g_source_destroy()
func (v *Source) Destroy() {
C.g_source_destroy(v.native())
}
// IsDestroyed is a wrapper around g_source_is_destroyed()
func (v *Source) IsDestroyed() bool {
return gobool(C.g_source_is_destroyed(v.native()))
}
// Unref is a wrapper around g_source_unref()
func (v *Source) Unref() {
C.g_source_unref(v.native())
}
// Ref is a wrapper around g_source_ref()
func (v *Source) Ref() *Source {
c := C.g_source_ref(v.native())
if c == nil {
return nil
}
return (*Source)(c)
}
// SourceRemove is a wrapper around g_source_remove()
func SourceRemove(src SourceHandle) bool {
return gobool(C.g_source_remove(C.guint(src)))
}
/*
* Miscellaneous Utility Functions
*/
// GetHomeDir is a wrapper around g_get_home_dir().
func GetHomeDir() string {
c := C.g_get_home_dir()
return C.GoString((*C.char)(c))
}
// GetUserCacheDir is a wrapper around g_get_user_cache_dir().
func GetUserCacheDir() string {
c := C.g_get_user_cache_dir()
return C.GoString((*C.char)(c))
}
// GetUserDataDir is a wrapper around g_get_user_data_dir().
func GetUserDataDir() string {
c := C.g_get_user_data_dir()
return C.GoString((*C.char)(c))
}
// GetUserConfigDir is a wrapper around g_get_user_config_dir().
func GetUserConfigDir() string {
c := C.g_get_user_config_dir()
return C.GoString((*C.char)(c))
}
// GetUserRuntimeDir is a wrapper around g_get_user_runtime_dir().
func GetUserRuntimeDir() string {
c := C.g_get_user_runtime_dir()
return C.GoString((*C.char)(c))
}
// GetUserSpecialDir is a wrapper around g_get_user_special_dir(). A
// non-nil error is returned in the case that g_get_user_special_dir()
// returns NULL to differentiate between NULL and an empty string.
func GetUserSpecialDir(directory UserDirectory) (string, error) {
c := C.g_get_user_special_dir(C.GUserDirectory(directory))
if c == nil {
return "", nilPtrErr
}
return C.GoString((*C.char)(c)), nil
}
// FormatSize is a wrapper around g_format_size().
func FormatSize(size uint64) string {
char := C.g_format_size(C.guint64(size))
defer C.free(unsafe.Pointer(char))
return C.GoString(char)
}
// FormatSizeFlags are flags to modify the format of the string returned by
// FormatSizeFull.
type FormatSizeFlags int
const (
FORMAT_SIZE_DEFAULT FormatSizeFlags = C.G_FORMAT_SIZE_DEFAULT
FORMAT_SIZE_LONG_FORMAT FormatSizeFlags = C.G_FORMAT_SIZE_LONG_FORMAT
FORMAT_SIZE_IEC_UNITS FormatSizeFlags = C.G_FORMAT_SIZE_IEC_UNITS
)
// FormatSizeFull is a wrapper around g_format_size_full().
func FormatSizeFull(size uint64, flags FormatSizeFlags) string {
char := C.g_format_size_full(C.guint64(size), C.GFormatSizeFlags(flags))
defer C.free(unsafe.Pointer(char))
return C.GoString(char)
}
// SpacedPrimesClosest is a wrapper around g_spaced_primes_closest().
func SpacedPrimesClosest(num uint) uint {
return uint(C.g_spaced_primes_closest(C.guint(num)))
}
/*
* GObject
*/
// IObject is an interface type implemented by Object and all types which embed
// an Object. It is meant to be used as a type for function arguments which
// require GObjects or any subclasses thereof.
type IObject interface {
toGObject() *C.GObject
toObject() *Object
}
// Object is a representation of GLib's GObject.
type Object struct {
GObject *C.GObject
}
func (v *Object) toGObject() *C.GObject {
if v == nil {
return nil
}
return v.native()
}
func (v *Object) toObject() *Object {
return v
}
// newObject creates a new Object from a GObject pointer.
func newObject(p *C.GObject) *Object {
if p == nil {
return nil
}
return &Object{GObject: p}
}
// native returns a pointer to the underlying GObject.
func (v *Object) native() *C.GObject {
if v == nil || v.GObject == nil {
return nil
}
p := unsafe.Pointer(v.GObject)
return C.toGObject(p)
}
// goValue converts a *Object to a Go type (e.g. *Object => *gtk.Entry).
// It is used in goMarshal to convert generic GObject parameters to
// signal handlers to the actual types expected by the signal handler.
func (v *Object) goValue() (interface{}, error) {
objType := Type(C._g_type_from_instance(C.gpointer(v.native())))
f, err := gValueMarshalers.lookupType(objType)
if err != nil {
return nil, err
}
// The marshalers expect Values, not Objects
val, err := ValueInit(objType)
if err != nil {
return nil, err
}
val.SetInstance(uintptr(unsafe.Pointer(v.GObject)))
rv, err := f(uintptr(unsafe.Pointer(val.native())))
return rv, err
}
// Take wraps a unsafe.Pointer as a glib.Object, taking ownership of it.
// This function is exported for visibility in other gotk3 packages and
// is not meant to be used by applications.
//
// To be clear, this should mostly be used when Gtk says "transfer none". Refer
// to AssumeOwnership for more details.
func Take(ptr unsafe.Pointer) *Object {
obj := newObject(ToGObject(ptr))
if obj == nil {
return nil
}
obj.RefSink()
runtime.SetFinalizer(obj, func(v *Object) { FinalizerStrategy(v.Unref) })
return obj
}
// AssumeOwnership is similar to Take, except the function does not take a
// reference. This is usually used for newly constructed objects that for some
// reason does not have an initial floating reference.
//
// To be clear, this should often be used when Gtk says "transfer full", as it
// means the ownership is transferred to the caller, so we can assume that much.
// This is in contrary to Take, which is used when Gtk says "transfer none", as
// we're now referencing an object that might possibly be kept, so we should
// mark as such.
func AssumeOwnership(ptr unsafe.Pointer) *Object {
obj := newObject(ToGObject(ptr))
runtime.SetFinalizer(obj, func(v *Object) { FinalizerStrategy(v.Unref) })
return obj
}
// Native returns a pointer to the underlying GObject.
func (v *Object) Native() uintptr {
return uintptr(unsafe.Pointer(v.native()))
}
// IsA is a wrapper around g_type_is_a().
func (v *Object) IsA(typ Type) bool {
return gobool(C.g_type_is_a(C.GType(v.TypeFromInstance()), C.GType(typ)))
}
// TypeFromInstance is a wrapper around g_type_from_instance().
func (v *Object) TypeFromInstance() Type {
c := C._g_type_from_instance(C.gpointer(unsafe.Pointer(v.native())))
return Type(c)
}
// ToGObject type converts an unsafe.Pointer as a native C GObject.
// This function is exported for visibility in other gotk3 packages and
// is not meant to be used by applications.
func ToGObject(p unsafe.Pointer) *C.GObject {
return (*C.GObject)(p)
// return C.toGObject(p)
}
// Ref is a wrapper around g_object_ref().
func (v *Object) Ref() {
C.g_object_ref(C.gpointer(v.GObject))
}
// Unref is a wrapper around g_object_unref().
func (v *Object) Unref() {
C.g_object_unref(C.gpointer(v.GObject))
}
// RefSink is a wrapper around g_object_ref_sink().
func (v *Object) RefSink() {
C.g_object_ref_sink(C.gpointer(v.GObject))
}
// IsFloating is a wrapper around g_object_is_floating().
func (v *Object) IsFloating() bool {
c := C.g_object_is_floating(C.gpointer(v.GObject))
return gobool(c)
}
// ForceFloating is a wrapper around g_object_force_floating().
func (v *Object) ForceFloating() {
C.g_object_force_floating(v.GObject)
}
// StopEmission is a wrapper around g_signal_stop_emission_by_name().
func (v *Object) StopEmission(s string) {
cstr := C.CString(s)
defer C.free(unsafe.Pointer(cstr))
C.g_signal_stop_emission_by_name((C.gpointer)(v.GObject),
(*C.gchar)(cstr))
}
// Set calls SetProperty.
func (v *Object) Set(name string, value interface{}) error {
return v.SetProperty(name, value)
}
// GetPropertyType returns the Type of a property of the underlying GObject.
// If the property is missing it will return TYPE_INVALID and an error.
func (v *Object) GetPropertyType(name string) (Type, error) {
cstr := C.CString(name)
defer C.free(unsafe.Pointer(cstr))
paramSpec := C.g_object_class_find_property(C._g_object_get_class(v.native()), (*C.gchar)(cstr))
if paramSpec == nil {
return TYPE_INVALID, errors.New("couldn't find Property")
}
return Type(paramSpec.value_type), nil
}
// GetProperty is a wrapper around g_object_get_property().
func (v *Object) GetProperty(name string) (interface{}, error) {
cstr := C.CString(name)
defer C.free(unsafe.Pointer(cstr))
t, err := v.GetPropertyType(name)
if err != nil {
return nil, err
}
p, err := ValueInit(t)
if err != nil {
return nil, errors.New("unable to allocate value")
}
C.g_object_get_property(v.GObject, (*C.gchar)(cstr), p.native())
return p.GoValue()
}
// SetProperty is a wrapper around g_object_set_property().
func (v *Object) SetProperty(name string, value interface{}) error {
cstr := C.CString(name)
defer C.free(unsafe.Pointer(cstr))
if _, ok := value.(Object); ok {
value = value.(Object).GObject
}
p, err := GValue(value)
if err != nil {
return errors.New("Unable to perform type conversion")
}
C.g_object_set_property(v.GObject, (*C.gchar)(cstr), p.native())
return nil
}
/*
* GObject Signals
*/
// Emit is a wrapper around g_signal_emitv() and emits the signal
// specified by the string s to an Object. Arguments to callback
// functions connected to this signal must be specified in args. Emit()
// returns an interface{} which must be type asserted as the Go
// equivalent type to the return value for native C callback.
//
// Note that this code is unsafe in that the types of values in args are
// not checked against whether they are suitable for the callback.
func (v *Object) Emit(s string, retType Type, args ...interface{}) (interface{}, error) {
cstr := C.CString(s)
defer C.free(unsafe.Pointer(cstr))
// Create array of this instance and arguments
valv := C.alloc_gvalue_list(C.int(len(args)) + 1)
defer C.free(unsafe.Pointer(valv))
// Add args and valv
val, err := GValue(v)
if err != nil {
return nil, errors.New("Error converting Object to GValue: " + err.Error())
}
C.val_list_insert(valv, C.int(0), val.native())
for i := range args {
val, err := GValue(args[i])
if err != nil {
return nil, fmt.Errorf("Error converting arg %d to GValue: %s", i, err.Error())
}
C.val_list_insert(valv, C.int(i+1), val.native())
}
t := v.TypeFromInstance()
// TODO: use just the signal name
id := C.g_signal_lookup((*C.gchar)(cstr), C.GType(t))
var ret *Value
if retType == TYPE_NONE {
ret, err = ValueAlloc()
} else {
ret, err = ValueInit(retType)
}
if err != nil {
return nil, errors.New("Error creating Value for return value")
}
C.g_signal_emitv(valv, id, C.GQuark(0), ret.native())
return ret.GoValue()
}
// HandlerBlock is a wrapper around g_signal_handler_block().
func (v *Object) HandlerBlock(handle SignalHandle) {
C.g_signal_handler_block(C.gpointer(v.GObject), C.gulong(handle))
}
// HandlerUnblock is a wrapper around g_signal_handler_unblock().
func (v *Object) HandlerUnblock(handle SignalHandle) {
C.g_signal_handler_unblock(C.gpointer(v.GObject), C.gulong(handle))
}
// HandlerDisconnect is a wrapper around g_signal_handler_disconnect().
func (v *Object) HandlerDisconnect(handle SignalHandle) {
// Ensure that Gtk will not use the closure beforehand.
C.g_signal_handler_disconnect(C.gpointer(v.GObject), C.gulong(handle))
closure.DisconnectSignal(uint(handle))
}
// Wrapper function for new objects with reference management.
func wrapObject(ptr unsafe.Pointer) *Object {
return Take(ptr)
}
/*
* GInitiallyUnowned
*/
// InitiallyUnowned is a representation of GLib's GInitiallyUnowned.
type InitiallyUnowned struct {
// This must be a pointer so copies of the ref-sinked object
// do not outlive the original object, causing an unref
// finalizer to prematurely run.
*Object
}
// Native returns a pointer to the underlying GObject. This is implemented
// here rather than calling Native on the embedded Object to prevent a nil
// pointer dereference.
func (v *InitiallyUnowned) Native() uintptr {
if v == nil || v.Object == nil {
return uintptr(unsafe.Pointer(nil))
}
return v.Object.Native()
}
/*
* GValue
*/
// Value is a representation of GLib's GValue.
//
// Don't allocate Values on the stack or heap manually as they may not
// be properly unset when going out of scope. Instead, use ValueAlloc(),
// which will set the runtime finalizer to unset the Value after it has
// left scope.
type Value struct {
GValue *C.GValue
}
// native returns a pointer to the underlying GValue.
func (v *Value) native() *C.GValue {
return v.GValue
}
// Native returns a pointer to the underlying GValue.
func (v *Value) Native() uintptr {
return uintptr(unsafe.Pointer(v.native()))
}
// IsValue checks if value is a valid and initialized GValue structure.
func (v *Value) IsValue() bool {
return gobool(C._g_is_value(v.native()))
}
// TypeName gets the type name of value.
func (v *Value) TypeName() string {
return C.GoString((*C.char)(C._g_value_type_name(v.native())))
}
// ValueAlloc allocates a Value and sets a runtime finalizer to call
// g_value_unset() on the underlying GValue after leaving scope.
// ValueAlloc() returns a non-nil error if the allocation failed.
func ValueAlloc() (*Value, error) {
c := C._g_value_alloc()
if c == nil {
return nil, nilPtrErr
}
v := &Value{c}
//An allocated GValue is not guaranteed to hold a value that can be unset
//We need to double check before unsetting, to prevent:
//`g_value_unset: assertion 'G_IS_VALUE (value)' failed`
runtime.SetFinalizer(v, func(f *Value) {
FinalizerStrategy(func() {
if !f.IsValue() {
C.g_free(C.gpointer(f.native()))
return
}
f.unset()
})
})
return v, nil
}
// ValueInit is a wrapper around g_value_init() and allocates and
// initializes a new Value with the Type t. A runtime finalizer is set
// to call g_value_unset() on the underlying GValue after leaving scope.
// ValueInit() returns a non-nil error if the allocation failed.
func ValueInit(t Type) (*Value, error) {
c := C._g_value_init(C.GType(t))
if c == nil {
return nil, nilPtrErr
}
v := &Value{c}
runtime.SetFinalizer(v, func(vv *Value) { FinalizerStrategy(vv.unset) })
return v, nil
}
// ValueFromNative returns a type-asserted pointer to the Value.
func ValueFromNative(l unsafe.Pointer) *Value {
//TODO why it does not add finalizer to the value?
return &Value{(*C.GValue)(l)}
}
func (v *Value) unset() {
C.g_value_unset(v.native())
}
// Unset is wrapper for g_value_unset
func (v *Value) Unset() {
v.unset()
}
// Type is a wrapper around the G_VALUE_HOLDS_GTYPE() macro and
// the g_value_get_gtype() function. GetType() returns TYPE_INVALID if v
// does not hold a Type, or otherwise returns the Type of v.
func (v *Value) Type() (actual Type, fundamental Type, err error) {
if !v.IsValue() {
return actual, fundamental, errors.New("invalid GValue")
}
cActual := C._g_value_type(v.native())
cFundamental := C._g_value_fundamental(cActual)
return Type(cActual), Type(cFundamental), nil
}
// GValue converts a Go type to a comparable GValue. GValue()
// returns a non-nil error if the conversion was unsuccessful.
func GValue(v interface{}) (gvalue *Value, err error) {
if v == nil {
val, err := ValueInit(TYPE_POINTER)
if err != nil {
return nil, err
}
val.SetPointer(uintptr(unsafe.Pointer(nil)))
return val, nil
}
switch e := v.(type) {
case bool:
val, err := ValueInit(TYPE_BOOLEAN)
if err != nil {
return nil, err
}
val.SetBool(e)
return val, nil
case int8:
val, err := ValueInit(TYPE_CHAR)
if err != nil {
return nil, err
}
val.SetSChar(e)
return val, nil
case int64:
val, err := ValueInit(TYPE_INT64)
if err != nil {
return nil, err
}
val.SetInt64(e)
return val, nil
case int:
val, err := ValueInit(TYPE_INT)
if err != nil {
return nil, err
}
val.SetInt(e)
return val, nil
case uint8:
val, err := ValueInit(TYPE_UCHAR)
if err != nil {
return nil, err
}
val.SetUChar(e)
return val, nil
case uint64:
val, err := ValueInit(TYPE_UINT64)
if err != nil {
return nil, err
}
val.SetUInt64(e)
return val, nil
case uint:
val, err := ValueInit(TYPE_UINT)
if err != nil {
return nil, err
}
val.SetUInt(e)
return val, nil
case float32:
val, err := ValueInit(TYPE_FLOAT)
if err != nil {
return nil, err
}
val.SetFloat(e)
return val, nil
case float64:
val, err := ValueInit(TYPE_DOUBLE)
if err != nil {
return nil, err
}
val.SetDouble(e)
return val, nil
case string:
val, err := ValueInit(TYPE_STRING)
if err != nil {
return nil, err
}
val.SetString(e)
return val, nil
case *Object:
val, err := ValueInit(TYPE_OBJECT)
if err != nil {
return nil, err
}
val.SetInstance(uintptr(unsafe.Pointer(e.GObject)))
return val, nil
default:
/* Try this since above doesn't catch constants under other types */
rval := reflect.ValueOf(v)
switch rval.Kind() {
case reflect.Int8:
val, err := ValueInit(TYPE_CHAR)
if err != nil {
return nil, err
}
val.SetSChar(int8(rval.Int()))
return val, nil
case reflect.Int16:
return nil, errors.New("Type not implemented")
case reflect.Int32:
return nil, errors.New("Type not implemented")
case reflect.Int64:
val, err := ValueInit(TYPE_INT64)
if err != nil {
return nil, err
}
val.SetInt64(rval.Int())
return val, nil
case reflect.Int:
val, err := ValueInit(TYPE_INT)
if err != nil {
return nil, err
}
val.SetInt(int(rval.Int()))
return val, nil
case reflect.Uintptr, reflect.Ptr:
val, err := ValueInit(TYPE_POINTER)
if err != nil {
return nil, err
}
val.SetPointer(rval.Pointer())
return val, nil
}
}
return nil, errors.New("Type not implemented")
}
// GValueMarshaler is a marshal function to convert a GValue into an
// appropriate Go type. The uintptr parameter is a *C.GValue.
type GValueMarshaler func(uintptr) (interface{}, error)
// TypeMarshaler represents an actual type and it's associated marshaler.
type TypeMarshaler struct {
T Type
F GValueMarshaler
}
// RegisterGValueMarshalers adds marshalers for several types to the
// internal marshalers map. Once registered, calling GoValue on any
// Value with a registered type will return the data returned by the
// marshaler.
func RegisterGValueMarshalers(tm []TypeMarshaler) {
gValueMarshalers.register(tm)
}
type marshalMap map[Type]GValueMarshaler
// gValueMarshalers is a map of Glib types to functions to marshal a
// GValue to a native Go type.
var gValueMarshalers = marshalMap{
TYPE_INVALID: marshalInvalid,
TYPE_NONE: marshalNone,
TYPE_INTERFACE: marshalInterface,
TYPE_CHAR: marshalChar,
TYPE_UCHAR: marshalUchar,
TYPE_BOOLEAN: marshalBoolean,
TYPE_INT: marshalInt,
TYPE_LONG: marshalLong,
TYPE_ENUM: marshalEnum,
TYPE_INT64: marshalInt64,
TYPE_UINT: marshalUint,
TYPE_ULONG: marshalUlong,
TYPE_FLAGS: marshalFlags,
TYPE_UINT64: marshalUint64,
TYPE_FLOAT: marshalFloat,
TYPE_DOUBLE: marshalDouble,
TYPE_STRING: marshalString,
TYPE_POINTER: marshalPointer,
TYPE_BOXED: marshalBoxed,
TYPE_OBJECT: marshalObject,
TYPE_VARIANT: marshalVariant,
}
func (m marshalMap) register(tm []TypeMarshaler) {
for i := range tm {
m[tm[i].T] = tm[i].F
}
}
func (m marshalMap) lookup(v *Value) (GValueMarshaler, error) {
actual, fundamental, err := v.Type()
if err != nil {
return nil, err
}
if f, ok := m[actual]; ok {
return f, nil
}
if f, ok := m[fundamental]; ok {
return f, nil
}
return nil, errors.New("missing marshaler for type")
}
func (m marshalMap) lookupType(t Type) (GValueMarshaler, error) {
if f, ok := m[Type(t)]; ok {
return f, nil
}
return nil, errors.New("missing marshaler for type")
}
func marshalInvalid(uintptr) (interface{}, error) {
return nil, errors.New("invalid type")
}
func marshalNone(uintptr) (interface{}, error) {
return nil, nil
}
func marshalInterface(uintptr) (interface{}, error) {
return nil, errors.New("interface conversion not yet implemented")
}
func marshalChar(p uintptr) (interface{}, error) {
c := C.g_value_get_schar((*C.GValue)(unsafe.Pointer(p)))
return int8(c), nil
}
func marshalUchar(p uintptr) (interface{}, error) {
c := C.g_value_get_uchar((*C.GValue)(unsafe.Pointer(p)))
return uint8(c), nil
}
func marshalBoolean(p uintptr) (interface{}, error) {
c := C.g_value_get_boolean((*C.GValue)(unsafe.Pointer(p)))
return gobool(c), nil
}
func marshalInt(p uintptr) (interface{}, error) {
c := C.g_value_get_int((*C.GValue)(unsafe.Pointer(p)))
return int(c), nil
}
func marshalLong(p uintptr) (interface{}, error) {
c := C.g_value_get_long((*C.GValue)(unsafe.Pointer(p)))
return int(c), nil
}
func marshalEnum(p uintptr) (interface{}, error) {
c := C.g_value_get_enum((*C.GValue)(unsafe.Pointer(p)))
return int(c), nil
}
func marshalInt64(p uintptr) (interface{}, error) {
c := C.g_value_get_int64((*C.GValue)(unsafe.Pointer(p)))
return int64(c), nil
}
func marshalUint(p uintptr) (interface{}, error) {
c := C.g_value_get_uint((*C.GValue)(unsafe.Pointer(p)))
return uint(c), nil
}
func marshalUlong(p uintptr) (interface{}, error) {
c := C.g_value_get_ulong((*C.GValue)(unsafe.Pointer(p)))
return uint(c), nil
}
func marshalFlags(p uintptr) (interface{}, error) {
c := C.g_value_get_flags((*C.GValue)(unsafe.Pointer(p)))
return uint(c), nil
}
func marshalUint64(p uintptr) (interface{}, error) {
c := C.g_value_get_uint64((*C.GValue)(unsafe.Pointer(p)))
return uint64(c), nil
}
func marshalFloat(p uintptr) (interface{}, error) {
c := C.g_value_get_float((*C.GValue)(unsafe.Pointer(p)))
return float32(c), nil
}
func marshalDouble(p uintptr) (interface{}, error) {
c := C.g_value_get_double((*C.GValue)(unsafe.Pointer(p)))
return float64(c), nil
}
func marshalString(p uintptr) (interface{}, error) {
c := C.g_value_get_string((*C.GValue)(unsafe.Pointer(p)))
return C.GoString((*C.char)(c)), nil
}
func marshalBoxed(p uintptr) (interface{}, error) {
c := C.g_value_get_boxed((*C.GValue)(unsafe.Pointer(p)))
return uintptr(unsafe.Pointer(c)), nil
}
func marshalPointer(p uintptr) (interface{}, error) {
c := C.g_value_get_pointer((*C.GValue)(unsafe.Pointer(p)))
return unsafe.Pointer(c), nil
}
func marshalObject(p uintptr) (interface{}, error) {
c := C.g_value_get_object((*C.GValue)(unsafe.Pointer(p)))
return newObject((*C.GObject)(c)), nil
}
func marshalVariant(p uintptr) (interface{}, error) {
c := C.g_value_get_variant((*C.GValue)(unsafe.Pointer(p)))
return newVariant((*C.GVariant)(c)), nil
}
// GoValue converts a Value to comparable Go type. GoValue()
// returns a non-nil error if the conversion was unsuccessful. The
// returned interface{} must be type asserted as the actual Go
// representation of the Value.
//
// This function is a wrapper around the many g_value_get_*()
// functions, depending on the type of the Value.
func (v *Value) GoValue() (interface{}, error) {
f, err := gValueMarshalers.lookup(v)
if err != nil {
return nil, err
}
//No need to add finalizer because it is already done by ValueAlloc and ValueInit
rv, err := f(uintptr(unsafe.Pointer(v.native())))
return rv, err
}
// SetBool is a wrapper around g_value_set_boolean().
func (v *Value) SetBool(val bool) {
C.g_value_set_boolean(v.native(), gbool(val))
}
// SetSChar is a wrapper around g_value_set_schar().
func (v *Value) SetSChar(val int8) {
C.g_value_set_schar(v.native(), C.gint8(val))
}
// SetInt64 is a wrapper around g_value_set_int64().
func (v *Value) SetInt64(val int64) {
C.g_value_set_int64(v.native(), C.gint64(val))
}
// SetInt is a wrapper around g_value_set_int().
func (v *Value) SetInt(val int) {
C.g_value_set_int(v.native(), C.gint(val))
}
// SetUChar is a wrapper around g_value_set_uchar().
func (v *Value) SetUChar(val uint8) {
C.g_value_set_uchar(v.native(), C.guchar(val))
}
// SetUInt64 is a wrapper around g_value_set_uint64().
func (v *Value) SetUInt64(val uint64) {
C.g_value_set_uint64(v.native(), C.guint64(val))
}
// SetUInt is a wrapper around g_value_set_uint().
func (v *Value) SetUInt(val uint) {
C.g_value_set_uint(v.native(), C.guint(val))
}
// SetFloat is a wrapper around g_value_set_float().
func (v *Value) SetFloat(val float32) {
C.g_value_set_float(v.native(), C.gfloat(val))
}
// SetDouble is a wrapper around g_value_set_double().
func (v *Value) SetDouble(val float64) {
C.g_value_set_double(v.native(), C.gdouble(val))
}
// SetString is a wrapper around g_value_set_string().
func (v *Value) SetString(val string) {
cstr := C.CString(val)
defer C.free(unsafe.Pointer(cstr))
C.g_value_set_string(v.native(), (*C.gchar)(cstr))
}
// SetInstance is a wrapper around g_value_set_instance().
func (v *Value) SetInstance(instance uintptr) {
C.g_value_set_instance(v.native(), C.gpointer(instance))
}
// SetPointer is a wrapper around g_value_set_pointer().
func (v *Value) SetPointer(p uintptr) {
C.g_value_set_pointer(v.native(), C.gpointer(p))
}
// GetPointer is a wrapper around g_value_get_pointer().
func (v *Value) GetPointer() unsafe.Pointer {
return unsafe.Pointer(C.g_value_get_pointer(v.native()))
}
// GetString is a wrapper around g_value_get_string(). GetString()
// returns a non-nil error if g_value_get_string() returned a NULL
// pointer to distinguish between returning a NULL pointer and returning
// an empty string.
func (v *Value) GetString() (string, error) {
c := C.g_value_get_string(v.native())
if c == nil {
return "", nilPtrErr
}
return C.GoString((*C.char)(c)), nil
}
type Signal struct {
name string
signalId C.guint
}
func SignalNew(signalName string) (*Signal, error) {
cstr := C.CString(signalName)
defer C.free(unsafe.Pointer(cstr))
signalId := C._g_signal_new((*C.gchar)(cstr))
if signalId == 0 {
return nil, fmt.Errorf("invalid signal name: %s", signalName)
}
return &Signal{
name: signalName,
signalId: signalId,
}, nil
}
// SignalNewV is a wrapper around g_signal_newv().
//
// Parameters:
// - signalName : The name for the signal.
// - returnType : The type of return value, or TYPE_NONE for a signal without a return value.
// - nParams : Amount of extra parameters the signal is going to recieve (the object who emits the signal does not count).
// - paramsTypes... : Datatypes of the parameters (amount of elements must match nParams, except when nParams is 0).
// If nParams is 0 then paramsTypes has to be TYPE_NONE.
// If nParams is 1 then paramsTypes has to be different from TYPE_NONE.
func SignalNewV(
signalName string,
returnType Type,
nParams uint,
paramsTypes ...Type,
) (*Signal, error) {
if nParams == 0 {
if paramsTypes[0] != TYPE_NONE || len(paramsTypes) != 1 {
return nil, fmt.Errorf("invalid Types: the amount of parameters is %d, paramsTypes must be TYPE_NONE", nParams)
}
} else if nParams == 1 {
if paramsTypes[0] == TYPE_NONE || len(paramsTypes) != 1 {
return nil, fmt.Errorf("invalid Types: the amount of parameters is %d, paramsTypes must be different from TYPE_NONE", nParams)
}
} else {
if len(paramsTypes) != int(nParams) {
return nil, fmt.Errorf("invalid Types: The amount of elements of paramsTypes has to be equal to %d", nParams)
}
}
cstr := C.CString(signalName)
defer C.free(unsafe.Pointer(cstr))
var sliceOfGTypes []C.GType
for _, paramType := range paramsTypes {
sliceOfGTypes = append(sliceOfGTypes, C.gsize(paramType))
}
signalId := C._g_signal_newv((*C.gchar)(cstr), C.gsize(returnType), C.guint(nParams), (*C.GType)(&sliceOfGTypes[0]))
if signalId == 0 {
return nil, fmt.Errorf("invalid signal name: %s", signalName)
}
return &Signal{
name: signalName,
signalId: signalId,
}, nil
}
func (s *Signal) String() string {
return s.name
}
type Quark uint32
// GetPrgname is a wrapper around g_get_prgname().
func GetPrgname() string {
c := C.g_get_prgname()
return C.GoString((*C.char)(c))
}
// SetPrgname is a wrapper around g_set_prgname().
func SetPrgname(name string) {
cstr := (*C.gchar)(C.CString(name))
defer C.free(unsafe.Pointer(cstr))
C.g_set_prgname(cstr)
}
// GetApplicationName is a wrapper around g_get_application_name().
func GetApplicationName() string {
c := C.g_get_application_name()
return C.GoString((*C.char)(c))
}
// SetApplicationName is a wrapper around g_set_application_name().
func SetApplicationName(name string) {
cstr := (*C.gchar)(C.CString(name))
defer C.free(unsafe.Pointer(cstr))
C.g_set_application_name(cstr)
}
// InitI18n initializes the i18n subsystem.
func InitI18n(domain string, dir string) {
domainStr := C.CString(domain)
defer C.free(unsafe.Pointer(domainStr))
dirStr := C.CString(dir)
defer C.free(unsafe.Pointer(dirStr))
C.init_i18n(domainStr, dirStr)
}
// Local localizes a string using gettext
func Local(input string) string {
cstr := C.CString(input)
defer C.free(unsafe.Pointer(cstr))
return C.GoString(C.localize(cstr))
}
// MarkupEscapeText will escape the given text
func MarkupEscapeText(input string) string {
cstr := C.CString(input)
defer C.free(unsafe.Pointer(cstr))
return C.GoString(C.g_markup_escape_text(cstr, -1))
}